Actuator controls
AC 01.2/ACExC 01.2

Control
→ Parallel
Profibus
Modbus RTU
Modbus TCP/IP
Foundation Fieldbus
HART
Read operation instructions first.

- Observe safety instructions.

Purpose of the document:
This document contains information for the commissioning, operation and maintenance staff. It is intended to support local device operation and setting modifications.

Reference documents:
- Operation instructions (Assembly, operation, commissioning) for actuator.

Reference documents can be downloaded from the Internet (www.auma.com) or ordered directly from AUMA (refer to <Addresses>).

Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Safety instructions</td>
<td>8</td>
</tr>
<tr>
<td>1.1. Basic information on safety</td>
<td>8</td>
</tr>
<tr>
<td>1.2. Range of application</td>
<td>8</td>
</tr>
<tr>
<td>1.3. Warnings and notes</td>
<td>9</td>
</tr>
<tr>
<td>1.4. References and symbols</td>
<td>9</td>
</tr>
<tr>
<td>2. Identification</td>
<td>10</td>
</tr>
<tr>
<td>2.1. Name plate</td>
<td>10</td>
</tr>
<tr>
<td>2.2. Short description</td>
<td>11</td>
</tr>
<tr>
<td>3. Operation</td>
<td>13</td>
</tr>
<tr>
<td>3.1. Local actuator operation</td>
<td>13</td>
</tr>
<tr>
<td>3.2. Actuator operation from remote</td>
<td>14</td>
</tr>
<tr>
<td>3.3. Menu navigation via push buttons (for settings and indications)</td>
<td>14</td>
</tr>
<tr>
<td>3.3.1. Menu layout and navigation</td>
<td>15</td>
</tr>
<tr>
<td>3.4. User level, password</td>
<td>16</td>
</tr>
<tr>
<td>3.4.1. Password entry</td>
<td>16</td>
</tr>
<tr>
<td>3.4.2. Password change</td>
<td>17</td>
</tr>
<tr>
<td>3.5. Language in the display</td>
<td>17</td>
</tr>
<tr>
<td>3.5.1. Language change</td>
<td>17</td>
</tr>
<tr>
<td>4. Indications</td>
<td>19</td>
</tr>
<tr>
<td>4.1. Indications during commissioning</td>
<td>19</td>
</tr>
<tr>
<td>4.2. Indications in the display</td>
<td>19</td>
</tr>
<tr>
<td>4.2.1. Feedback indications from actuator and valve</td>
<td>20</td>
</tr>
<tr>
<td>4.2.2. Status indications according to AUMA classification</td>
<td>23</td>
</tr>
<tr>
<td>4.2.3. Status indications according to NAMUR recommendation</td>
<td>24</td>
</tr>
<tr>
<td>4.3. Indication lights of local controls</td>
<td>25</td>
</tr>
<tr>
<td>4.3.1. Indication lights: change colour</td>
<td>26</td>
</tr>
<tr>
<td>5. Signals (output signals)</td>
<td>27</td>
</tr>
<tr>
<td>5.1. Status signals via output contacts (digital outputs)</td>
<td>27</td>
</tr>
<tr>
<td>5.1.1. Assignment of outputs</td>
<td>27</td>
</tr>
<tr>
<td>5.1.2. Coding the outputs</td>
<td>27</td>
</tr>
<tr>
<td>5.2. Configurable status signals</td>
<td>27</td>
</tr>
<tr>
<td>5.3. Analogue signals (analogue outputs)</td>
<td>29</td>
</tr>
<tr>
<td>5.3.1. Assignment of analogue output 1</td>
<td>29</td>
</tr>
<tr>
<td>5.3.2. Signal range of analogue output 1</td>
<td>30</td>
</tr>
<tr>
<td>5.3.3. Adjustment of analogue output 1</td>
<td>30</td>
</tr>
</tbody>
</table>
5.3.4. Assignment of analogue output 2 30
5.3.5. Signal range of analogue output 2 30
5.3.6. Adjustment of analogue output 2 31

6. **Operation** .. 32
6.1. Operation mode Off 32
6.2. Operation mode Local 32
6.2.1. Push-to-run operation or self-retaining Local 32
6.3. Operation mode Remote 33
6.3.1. Push-to-run operation or self-retaining Remote 33
6.4. Operation mode EMERGENCY 35
6.5. Operation mode EMERGENCY stop 35
6.6. Operation mode Disabled 35
6.7. Operation mode Service 35

7. **Basic settings for commissioning** ... 37
7.1. Type of seating for end positions 37
7.1.1. Type of seating: set 37
7.2. Torque switching 38
7.2.1. Torque switching: set 39
7.3. Limit switching 40
7.3.1. Limit switching: set 40
7.4. Date and time 42
7.5. Display formats 42
7.5.1. Date format 42
7.5.2. Time format 43
7.5.3. Number format 43
7.5.4. Torque unit 43
7.5.5. Temperature unit 43
7.5.6. Position units 43
7.5.7. Process factor units 44
7.5.8. Analogue working value units (AIN) 45
7.5.9. Analogue signal output units (AIN) 45
7.6. Contrast 45

8. **Application functions** .. 46
8.1. Intermediate positions (pivot points) 46
8.1.1. Intermediate positions (pivot points): define 46
8.1.2. Signal behaviour of intermediate positions: set 46
8.1.3. Hysteresis for intermediate positions: set 47
8.2. Operation profile (operation behaviour) for intermediate positions 48
8.2.1. Operation profile: activate 48
8.2.2. Operation behaviour for intermediate positions (pivot points): set 48
8.2.3. Off times for intermediate positions (pivot points): set 49
8.3. Two-wire control 49
8.4. Positioner (operation mode Remote SETPOINT) 50
8.4.1. Positioner: activate 50
8.4.2. Adaptive behaviour: switch on or off 50
8.4.3. Overrun (inner dead band): set manually 51
8.4.4. Max. error variable (outer dead band): set manually 51
8.4.5. Dead time: set 52
8.4.6. Hysteresis for positioner: set 52
8.4.7. Closing fully/opening fully (end position tolerance for setpoint) 52
8.4.8. Setting range: limit 53
8.4.9. Change-over between OPEN - CLOSE control and setpoint control 53
8.4.10. Input of setpoint position 54
8.4.11. Input range of setpoint position 54
8.4.12. Split Range operation 54
5.
8.5. Process controller 55
8.5.1. Process controller activation 56
8.5.2. Process controller: set modulating behaviour 56
8.5.3. Setpoint source (input for process setpoint) 57
8.5.4. Behaviour on loss of process setpoint 58
8.5.5. Inverse operation 58
8.5.6. Internal process setpoint 58
8.5.7. Setting procedure 59
8.5.8. Proportional amplification Kp: set 59
8.5.9. Reset time Ti: set 59
8.5.10. Rate time Td: set 59
8.5.11. Actual value source (input for actual process value) 60
6.
8.6. Stepping mode 60
8.6.1. Stepping mode: activate 60
8.6.2. Operation mode for stepping mode 61
8.6.3. Start and end of stepping mode 61
8.6.4. On times and off times 61
7.
8.7. By-pass function 62
8.7.1. Bypass function: activate 63
8.7.2. By-pass application: configure 64
8.
8.8. Lift Plug Valve (LPV) 64
8.8.1. LPV function: activate 67
8.8.2. LPV actuator type: configure 67
8.8.3. Delay time of master LPV actuator: configure 67
8.8.4. Delay time of slave LPV actuator: configure 68
9.
8.9. Multiport valve function (operation to position) 68
8.9.1. Multiport valve function: activate 68
8.9.2. Actuator type: set/check 69
8.9.3. Gear reduction ratio: set/check 69
8.9.4. Number of ports (positions) 69
8.9.5. Home port (zero position): set 70
8.9.6. Positions (of valve ports): define/check 70
8.9.7. Operate to position via push buttons of the local controls 71
8.9.8. Operate to position from Remote 72
8.9.9. Dead band 72
8.9.10. Backlash compensation 72
8.9.11. Signalling behaviour of positions: set/check 73
8.9.12. Hysteresis for signalling intermediate positions: set 73
10.
8.10. Automatic deblocking 74
8.10.1. Automatic deblocking function: activate 74
8.10.2. Operation time for operation in opposite direction: set 75
8.10.3. Number of deblocking attempts: set 75
8.10.4. Tolerance range: set 75
11.
8.11. Heater system and heaters 75
8.11.1. Heater system within the actuator controls
8.11.2. Heater on control unit (actuator)
8.11.3. Motor heater

9. **Failure functions**

9.1. Reversing prevention time

9.2. Failure behaviour on loss of signal

9.2.1. Failure behaviour initiation on loss of signal

9.2.2. Failure source (failure reason) for a failure operation: set

9.2.3. Failure operation (reaction of the actuator) on loss of signal

9.2.4. Failure position: define

9.2.5. Failure position MPV: define

9.2.6. Delay time: set

9.3. **EMERGENCY behaviour**

9.3.1. EMERGENCY behaviour: activate

9.3.2. EMERGENCY failure behaviour

9.3.3. Failure source (failure reason) for an EMERGENCY operation: set

9.3.4. Operation mode for EMERGENCY behaviour

9.3.5. EMERGENCY operation

9.3.6. EMERGENCY position

9.3.7. EMERGENCY position MPV

9.3.8. Torque switching: by-pass

9.3.9. Motor protection: by-pass

9.3.10. Stepping mode: by-pass

9.3.11. Operation profile: by-pass

9.3.12. Interlock: by-pass

9.3.13. Local stop: by-pass

9.3.14. Delay time for EMERGENCY operation

9.4. Enabling local controls

9.4.1. Enabling function: activate

9.4.2. Enabling function behaviour

9.5. Priority REMOTE

9.5.1. Priority REMOTE: activate

9.5.2. Priority REMOTE behaviour

9.6. Interlock (enabling operation commands)

9.6.1. Interlock: activate

9.6.2. Failure source of Interlock enable signal: set

9.6.3. Operation mode for interlock

9.6.4. Interlock behaviour (running direction)

9.7. Local Stop

9.7.1. Behaviour

9.8. **EMERGENCY stop function**

9.9. Partial Valve Stroke Test (PVST)

9.9.1. PVST: activate

9.9.2. Operation mode for PVST

9.9.3. Behaviour for PVST: define

9.9.4. Partial stroke for PVST: set

9.9.5. PVST monitoring time: set

9.9.6. PVST operating time: set

9.9.7. PVST reverse time: set

9.9.8. PVST reminder
10. **Monitoring functions**

10.1. Torque monitoring

10.2. Motor protection monitoring (thermal monitoring)

10.3. Type of duty monitoring (motor starts and running time)

10.4. Operating time monitoring

10.5. Reaction monitoring

10.6. Motion detector

10.6.1. Motion detector: activate

10.6.2. Detection time \(dt \)

10.6.3. Travel difference \(dx \)

10.6.4. Delay time

10.7. Monitoring of electronics power supply

10.8. Temperature monitoring

10.9. Heater system/heater monitoring

10.10. Verification of sub-assemblies

10.11. Phase failure monitoring

10.12. Phase sequence detection and correction of the direction of rotation

11. **Functions: activate and enable**

11.1. Activate functions

11.2. Enable functions

12. **Service functions**

12.1. Direction of rotation

12.2. Factory setting

12.3. Languages: reload

12.4. Data export

12.5. Data import

12.6. Actual configuration: accept

12.7. Firmware update

12.8. Service software AUMA CDT (Bluetooth)

13. **Diagnostics**

13.1. Electronic device ID

13.2. Diagnostic Bluetooth connection

13.3. Diagnostic Interface

13.4. Diagnostic Position transmitter potentiometer

13.5. Diagnostic Position transmitter RWG

13.6. Diagnostic Position transmitter MWG

13.7. Diagnostic positioner

13.8. Diagnostic On time monitoring

13.9. Diagnostic Process controller

13.10. Diagnostic FQM (fail safe)

13.11. Simulation (inspection and test function)

13.11.1. Actuator signals

13.11.2. Interface signals

14. **Plant Asset Management**

14.1. Operating data

14.2. Event report

14.3. Characteristics

14.3.1. Torque-travel characteristic

14.3.2. Position-time characteristic
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.3.3.</td>
<td>Temperature-time characteristic</td>
<td>119</td>
</tr>
<tr>
<td>14.4.</td>
<td>Histograms</td>
<td>119</td>
</tr>
<tr>
<td>14.4.1.</td>
<td>Motor running time-position (histogram)</td>
<td>119</td>
</tr>
<tr>
<td>14.4.2.</td>
<td>Motor running time-temperature (histogram)</td>
<td>120</td>
</tr>
<tr>
<td>14.4.3.</td>
<td>Acceleration-frequency (histogram)</td>
<td>121</td>
</tr>
<tr>
<td>14.4.4.</td>
<td>Motor running time-torque (histogram)</td>
<td>121</td>
</tr>
<tr>
<td>14.5.</td>
<td>Maintenance (information and signals)</td>
<td>122</td>
</tr>
<tr>
<td>14.6.</td>
<td>Operating times: display</td>
<td>124</td>
</tr>
<tr>
<td>14.7.</td>
<td>Device temperatures: display</td>
<td>124</td>
</tr>
<tr>
<td>15.</td>
<td>Corrective action</td>
<td>125</td>
</tr>
<tr>
<td>15.1.</td>
<td>Primary fuses</td>
<td>125</td>
</tr>
<tr>
<td>15.2.</td>
<td>Fault indications and warning indications</td>
<td>125</td>
</tr>
<tr>
<td>16.</td>
<td>Appendix</td>
<td>133</td>
</tr>
<tr>
<td>16.1.</td>
<td>Selection overview for output contacts and indication lights (digital outputs DOUT)</td>
<td>133</td>
</tr>
<tr>
<td>16.2.</td>
<td>Selection overview of binary signals for digital inputs (DIN)</td>
<td>135</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>137</td>
</tr>
<tr>
<td>Parameter index</td>
<td></td>
<td>141</td>
</tr>
<tr>
<td>Addresses</td>
<td></td>
<td>146</td>
</tr>
</tbody>
</table>
1. Safety instructions

1.1. Basic information on safety

Standards/directives

AUMA products are designed and manufactured in compliance with recognised standards and directives. This is certified in a Declaration of Incorporation and an EC Declaration of Conformity.

The end user or the contractor must ensure that all legal requirements, directives, guidelines, national regulations and recommendations with respect to assembly, electrical connection, commissioning and operation are met at the place of installation.

They include among others:

- Standards and directives such as: EN 60079 “Electrical apparatus for explosive gas atmospheres” –
 - Part 14: Electrical installations in hazardous areas (other than mines).
 - Part 17: Inspection and maintenance of electrical installations in hazardous areas (other than mines).

Safety instructions/warnings

All personnel working with this device must be familiar with the safety and warning instructions in this manual and observe the instructions given. Safety instructions and warning signs on the device must be observed to avoid personal injury or property damage.

Qualification of staff

Assembly, electrical connection, commissioning, operation, and maintenance must be carried out exclusively by suitably qualified personnel having been authorised by the end user or contractor of the plant only.

Prior to working on this product, the staff must have thoroughly read and understood these instructions and, furthermore, know and observe officially recognised rules regarding occupational health and safety.

Work performed in potentially explosive atmospheres is subject to special regulations which have to be observed. The end user or contractor of the plant are responsible for respect and control of these regulations, standards, and laws.

Commissioning

Prior to commissioning, it is important to check that all settings meet the requirements of the application. Incorrect settings might present a danger to the application, e.g. cause damage to the valve or the installation. The manufacturer will not be held liable for any consequential damage. Such risk lies entirely with the user.

Operation

Prerequisites for safe and smooth operation:

- Correct transport, proper storage, mounting and installation, as well as careful commissioning.
- Only operate the device if it is in perfect condition while observing these instructions.
- Immediately report any faults and damage and allow for corrective measures.
- Observe recognised rules for occupational health and safety.
- Observe the national regulations.

Protective measures

The end user or the contractor are responsible for implementing required protective measures on site, such as enclosures, barriers, or personal protective equipment for the staff.

Maintenance

Any device modification requires the consent of the manufacturer.

1.2. Range of application

AUMA actuator controls are exclusively designed for the operation of AUMA actuators. Other applications require explicit (written) confirmation by the manufacturer. The following applications are not permitted, e.g.:

- motor control
- pump control

No liability can be assumed for inappropriate or unintended use.
Observance of these operation instructions is considered as part of the device's designated use.

1.3. Warnings and notes

The following warnings draw special attention to safety-relevant procedures in these operation instructions, each marked by the appropriate signal word (DANGER, WARNING, CAUTION, NOTICE).

- **DANGER** Indicates an imminently hazardous situation with a high level of risk. Failure to observe this warning could result in death or serious injury.

- **WARNING** Indicates a potentially hazardous situation with a medium level of risk. Failure to observe this warning could result in death or serious injury.

- **CAUTION** Indicates a potentially hazardous situation with a low level of risk. Failure to observe this warning may result in minor or moderate injury. May also be used with property damage.

- **NOTICE** Potentially hazardous situation. Failure to observe this warning may result in property damage. Is not used for personal injury.

Arrangement and typographic structure of the warnings

- **DANGER** Type of hazard and respective source!
 - Potential consequence(s) in case of non-observance (option)
 - Measures to avoid the danger
 - Further measure(s)

Safety alert symbol warns of a potential personal injury hazard. The signal word (here: DANGER) indicates the level of hazard.

1.4. References and symbols

The following references and symbols are used in these instructions:

- **Information** The term Information preceding the text indicates important notes and information.
 - Symbol for CLOSED (valve closed)
 - Symbol for OPEN (valve open)
 - Important information before the next step. This symbol indicates what is required for the next step or what has to be prepared or observed.
 - **M** Via the menu to parameter
 - Describes the path within the menu to the parameter. By using the push buttons of the local controls you may quickly find the desired parameter in the display.
 - **< >** Reference to other sections
 - Terms in brackets shown above refer to other sections of the document which provide further information on this topic. These terms are either listed in the index, a heading or in the table of contents and may quickly be found.
2. Identification

2.1. Name plate

Each device is equipped with a name plate.

Figure 1: Arrangement of name plate

| [1] | Actuator controls name plate |

Description of actuator controls name plate

Figure 2: Actuator controls name plate

[1]	Type designation
[2]	Order number
[3]	Serial number
[4]	Actuator terminal plan
[5]	Actuator controls terminal plan
[7]	AUMA power class for switchgear
[8]	Permissible ambient temperature
[9]	Enclosure protection
[10]	Control

Descriptions

Type designation

Type and size

These instructions apply to the following devices types and sizes:

Types: AC/ACExC = AUMATIC actuator controls

Size: 01.2

Versions: Intrusive and Non-Intrusive

Order number

The product can be identified using this number and the technical data as well as order-related data pertaining to the device can be requested.

Please always state this number for any product inquiries.

On the Internet at http://www.auma.com, we offer a service allowing authorised users to download order-related documents such as wiring diagrams and technical data (both in German and English), inspection certificates and the operation instructions when entering the order number.
Actuator controls
AC 01.2/ACExC 01.2

Serial number

<table>
<thead>
<tr>
<th>Position 1+2: Assembly in week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position 3+4: Year of production</td>
</tr>
<tr>
<td>All other positions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serial number</th>
<th>Description of serial number (with example)</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 14 MD12345</td>
<td>Position 1+2: Assembly in week</td>
</tr>
<tr>
<td>05</td>
<td>Week 05</td>
</tr>
<tr>
<td>14</td>
<td>Year of production: 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actuator controls terminal plan</th>
</tr>
</thead>
</table>

Position 9 in the TPA wiring diagram: Position transmitter (actuator):

Control unit: electromechanical:

- 0 = Without position transmitter
- A, B, J, K, L, N = Potentiometer
- C, D, E, G, H, M, S = EWG/RWG (electronic position transmitter)

Control unit: electronic:

- I = MWG (Magnetic limit and torque transmitter)

AUMA power class for switchgear

The switchgear used in the actuator controls (reversing contactors/thyristors) are classified according to AUMA power classes (e.g. A1, B1,). The power class defines the max. permissible rated power (of the motor) the switchgear has been designed for. The rated power (nominal power) of the actuator motor is indicated in kW on the motor name plate. For the assignment of the AUMA power classes to the nominal power of the motor types, refer to the separate electrical data sheets.

For switchgear without assignment to any power classes, the actuator controls name plate does not indicate the power class but the max. rated power in kW.

Control

Table 2: Control examples (indications on controls name plate)

<table>
<thead>
<tr>
<th>Input signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V DC</td>
<td>Control voltage 24 V DC for OPEN-CLOSE control via digital inputs (OPEN, STOP, CLOSE)</td>
</tr>
<tr>
<td>115 V AC</td>
<td>Control voltage 115 V AC for OPEN-CLOSE control via digital inputs (OPEN, STOP, CLOSE)</td>
</tr>
<tr>
<td>0/4 – 20 mA</td>
<td>Input current for setpoint control via analog input</td>
</tr>
</tbody>
</table>

Data Matrix code

When registered as authorised user, you may use the AUMA Support App to scan the Data Matrix code and directly access the order-related product documents without having to enter order number of serial number.

Figure 3: Link to the App store:

![Link to the App store](image)

2.2. Short description

Actuator controls

AUMATIC actuator controls are used to operate AUMA actuators and are supplied ready for use. The controls may be mounted directly to the actuator or separately on a wall bracket.

The functions of the AUMATIC controls include standard valve control in OPEN-CLOSE duty, positioning, process control, logging of operating data right through to diagnostic functions.

Local controls/AUMA CDT

Operation, setting, and display can be performed on site directly at the controls.

When set to local control, it is possible to
operate the actuator via the local controls (push buttons and display) and perform settings (contents of these instructions).

read in or out data or modify and save settings via the AUMA CDT software (accessories), using a computer (laptop or PC). The connection between computer and AUMATIC is wireless via Bluetooth interface (not included in these instructions).

Intrusive - Non-Intrusive

Intrusive version (control unit: electromechanical):
Limit and torque setting is performed via switches in the actuator.

Non-Intrusive version (control unit: electronic):
Limit and torque setting is performed via the controls, actuator and controls housings do not have to be opened. For this purpose, the actuator is equipped with an MWG (magnetic limit and torque transmitter), also supplying analogue torque feedback signals/torque indication and analogue position feedback signals/position indication.
3. Operation

Valve damage due to incorrect basic setting!

→ Prior to electrical operation of the actuator, the basic settings i.e. type of seating, torque and limit switching have to be completed.

3.1. Local actuator operation

Local actuator operation is performed using the push buttons of the local controls of the AC.

Figure 4: Local controls

[1] Push button for operation command in direction OPEN
[2] Push button STOP
[3] Push button for operation command in direction CLOSE
[4] Push button RESET
[5] Selector switch

Hot surfaces, e.g. possibly caused by high ambient temperatures or strong direct sunlight!

Danger of burns

→ Check surface temperature and wear protective gloves, if required.

The actuator can now be operated using the push buttons [1 – 3]:
- Run actuator in direction OPEN: Press push button [1] ●
- Stop actuator: Press push button STOP [2].
- Run actuator in direction CLOSE: Press push button [3] ▼

Information The OPEN - CLOSE operation commands can be given either in push-to-run or in self-retaining operation mode. For further information, please refer to <Push-to-run operation or self-retaining local> chapter.
3.2. Actuator operation from remote

→ Set selector switch to position **Remote control** (REMOTE).

Now, it is possible to operate the actuator via remote control, via operation commands (OPEN, STOP, CLOSE) or analogue setpoints (e.g. 0 – 20 mA).

Information For actuators equipped with a positioner, it is possible to change over between **OPEN - CLOSE control** (Remote OPEN-CLOSE) and **setpoint control** (Remote SET-POINT). For further information, refer to chapter <Change-over between OPEN - CLOSE control and setpoint control>.

3.3. Menu navigation via push buttons (for settings and indications)

Menu navigation for display and setting is made via the push buttons [1 – 4] of the local controls.

Set the selector switch [5] to position 0 (OFF) when navigating through the menu.

The bottom row of the display [6] serves as navigation support and explains which push buttons [1 – 4] are used for menu navigation.

Figure 5:

![Figure 5: Push buttons and display](image)

Table 3: Important push button functions for menu navigation

<table>
<thead>
<tr>
<th>Push buttons</th>
<th>Navigation support on display</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] ▲</td>
<td>Up ▲</td>
<td>Change screen/selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change values</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter figures from 0 to 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change values</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter figures from 0 to 9</td>
</tr>
</tbody>
</table>
Functions

<table>
<thead>
<tr>
<th>Push buttons</th>
<th>Navigation support on display</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3] ←</td>
<td>Ok</td>
<td>Confirm selection</td>
</tr>
<tr>
<td></td>
<td>Save</td>
<td>Save</td>
</tr>
<tr>
<td></td>
<td>Edit</td>
<td>Enter <Edit> menu</td>
</tr>
<tr>
<td></td>
<td>Details</td>
<td>Display more details</td>
</tr>
<tr>
<td>[4] C</td>
<td>Setup</td>
<td>Enter Main menu</td>
</tr>
<tr>
<td></td>
<td>Esc</td>
<td>Cancel process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return to previous display</td>
</tr>
</tbody>
</table>

Backlight
- The display is illuminated in white during normal operation. The backlight turns to red under fault conditions.
- The screen illumination is brighter when operating a push button. If no push button is operated for 60 seconds, the display will become dim again.

3.3.1. Menu layout and navigation

Groups

The indications on the display are divided into 3 groups:

- **Startup menu**
- **Status menu**
- **Main menu**

Group selection

It is possible to select between status menu S and main menu M:

For this, set selector switch to 0 (OFF), hold down push button C for approx. 2 seconds until a screen containing the ID M... appears.

Direct display via ID

When entering the ID within the main menu, screens can be displayed directly (without clicking through).
Figure 9: Direct display (example)

Display indicates in the bottom row: Go to
1. Press push button ▲ Go to.
Display indicates: Go to menu M0000
2. Use push buttons ▲▼ Up ▲ Down ▼ to select figures 0 to 9.
3. Press push button ◁ Ok to confirm first digit.
4. Repeat steps 2 and 3 for all further digits.
5. To cancel the process: Press C Esc.

3.4. User level, password

User level

The user level defines which menu items or parameters can be displayed or modified by the active user.

There are 6 different user levels. The user level is indicated in the top row:

Figure 10: User level display (example)

Password

A password must be entered to allow parameter modification. The display indicates: Password 0***

A specific password is assigned to each user level and permits different actions.

Table 4: User levels and authorisations

<table>
<thead>
<tr>
<th>Designation (user level)</th>
<th>Authorisation/password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observer (1)</td>
<td>Verify settings</td>
</tr>
<tr>
<td></td>
<td>No password required</td>
</tr>
<tr>
<td>Operator (2)</td>
<td>Change settings</td>
</tr>
<tr>
<td></td>
<td>Default factory password: 0000</td>
</tr>
<tr>
<td>Maintenance (3)</td>
<td>Reserved for future extensions</td>
</tr>
<tr>
<td>Specialist (4)</td>
<td>Change device configuration</td>
</tr>
<tr>
<td></td>
<td>e.g. type of seating, assignment of output contacts</td>
</tr>
<tr>
<td></td>
<td>Default factory password: 0000</td>
</tr>
<tr>
<td>Service (5)</td>
<td>Service staff</td>
</tr>
<tr>
<td></td>
<td>Change configuration settings</td>
</tr>
<tr>
<td>AUMA (6)</td>
<td>AUMA administrator</td>
</tr>
</tbody>
</table>

3.4.1. Password entry

1. Select desired menu and hold down push button ◁ for approx. 3 seconds.
 ➡ Display indicates the set user level, e.g Observer (1)
2. Press ▲ Up ▲ to select a higher user level and press ◁ Ok to confirm.
 ➡ Display shows: Password 0***
3. Use push buttons ▲▼ Up ▲ Down ▼ to select figures 0 to 9.
4. Confirm first digit of password via push button ◁ Ok.
5. Repeat steps 1 and 2 for all further digits.
 ➡ Having confirmed the last digit with ◁ Ok, access to all parameters within one user level is possible if the password entry is correct.
3.4.2. Password change

Only the passwords of same or lower user level may be changed.

Example: The user is signed in as Specialist (4). This authorises him or her to modify the passwords between user levels (1) to (4).

Device configuration M0053
Service functions M0222
Change passwords M0229

Menu point Service functions M0222 is only visible if user level has been set to Specialist (4) or higher.

Select main menu
1. Set selector switch to position 0 (OFF).

2. Press push button C Setup and hold it down for approx. 3 seconds.
 ➥ Display goes to main menu and indicates: ▶ Display...

Change passwords
3. Select parameter Change passwords either:
 → click via the menu M ▶ to parameter, or
 → via direct display: press ▲ and enter ID M0229
 - Display indicates: ▶ Change passwords
 - The user level is indicated in the top row (1 – 6), e.g.:

 - For user level 1 (view only), passwords cannot be changed. To change passwords, you must change to a higher user level. For this, enter a password via a parameter.

4. For a user level between 2 and 6: Press push button ✈ Ok.
 ➥ The display indicates the highest user level, e.g.: For user 4

5. Select user level via push buttons ▲ Up ▼ Down ▼ and confirm with ✈ Ok.
 ➥ Display indicates: ▶ Change passwords Password 0***

6. Enter current password (→ enter password).
 ➥ Display indicates: ▶ Change passwords Password (new) 0***

7. Enter new password (→ enter password).
 ➥ Display indicates: ▶ Change passwords For user 4 (example)

8. Select next user level via push buttons ▲ Up ▼ Down ▼ or cancel the process via Esc.

3.5. Language in the display

The AUMATIC display is multilingual.

3.5.1. Language change

Display... M0009
Language M0049

Select main menu
1. Set selector switch to position 0 (OFF).
2. Press push button C **Setup** and hold it down for approx. 3 seconds.
 ➤ Display goes to main menu and indicates: ▶ **Display...**

Change language

3. Press ↓ **Ok**.
 ➤ Display indicates: ▶ **Language**
4. Press ↓ **Ok**.
 ➤ Display indicates the selected language, e.g.: ▶ **Deutsch**
5. The bottom row of the display indicates:
 → **Save** → continue with step 10
 → **Edit** → continue with step 6
6. Press ← **Edit**.
 ➤ Display indicates: ▶ **Observer (1)**
7. Select user level via ▲▼ **Up ▼ Down ▼** resulting in the following significations:
 → black triangle: ▶ = current setting
 → white triangle: ▷ = selection (not saved yet)
8. Press ↓ **Ok**.
 ➤ Display indicates: **Password 0***
9. Enter password (→ enter password).
 ➤ Display indicates: ▶ **Language** and **Save** (bottom row)

Language selection

10. Select new language via ▲▼ **Up ▼ Down ▼** resulting in the following significations:
 → black triangle: ▶ = current setting
 → white triangle: ▷ = selection (not saved yet)
11. Confirm selection via ← **Save**.
 ➤ The display changes to the new language. The new language selection is saved.
4. Indications

4.1. Indications during commissioning

LED test
When switching on the power supply, all LEDs on the local controls illuminate for approx. 1 second. This optical feedback indicates that the voltage supply is connected to the controls and all LEDs are operable.

Figure 11: LED test

Language selection
During the self-test, the language selection can be activated so that the selected language is immediately indicated in the display. For this, set selector switch [5] to position 0 (OFF).

Activate language selection:
1. Display indicates in the bottom row: Language selection menu? ’Reset’
2. Press push button RESET and hold it down until the following text is displayed in the bottom line: Language menu loading, please wait.

Figure 12: Self-test

Startup menu
The current firmware version is displayed during the startup procedure:

Figure 13: Startup menu with firmware version: 04.00.00–xxxx

If the language selection feature has been activated during the self-test, the menu for selecting the display language will now be indicated. For further information on language setting, please refer to chapter <Language in the display>.

Figure 14: Language selection

If no entry is made over a longer period of time (approx. 1 minute), the display automatically returns to the first status indication.

4.2. Indications in the display

Status bar
The status bar (first row in the display) indicates the operation mode [1], the presence of an error [2] and the ID number [3] of the current display indication.
Figure 15: Information in the status bar (top)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Navigation support
If further details or information are available with reference to the display, the following indications Details or More appear in the navigation support (bottom display row). Then, further information can be displayed via the push button.

Figure 16: Navigation support (bottom)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Down</td>
<td>Details</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Down</td>
</tr>
</tbody>
</table>

[1] shows list with detailed indications
[2] shows further available information

The navigation support (bottom row) is faded out after approx. 3 seconds. Press any push button (selector switch in position 0 (OFF)) to fade in the navigation support.

4.2.1. Feedback indications from actuator and valve

Display indications depend on the actuator version.

Valve position (S0001)

This indication is only available if a position transmitter (potentiometer, EWG, RWG or MWG) is installed in the actuator.

- **S0001** on the display indicates the valve position in % of the travel.
- The bargraph display appears after approx. 3 seconds.
- When issuing an operation command, an arrow indicates the direction (OPEN/CLOSE).

Figure 17: Valve position and direction of operation

![Valve position and direction of operation](image)

Reaching the preset end positions is additionally indicated via (CLOSED) and (OPEN) symbols.

Figure 18: End position CLOSED/OPEN reached

![End position CLOSED/OPEN reached](image)

0% Actuator is in end position CLOSED
100% Actuator is in end position OPEN
Torque (S0002)

The indication is only available if the actuator is equipped with an MWG (magnetic limit and torque transmitter).

- **S0002** on the display indicates the torque applied at the actuator output.
- The bargraph display appears after approx. 3 seconds.

Figure 19: Torque

<table>
<thead>
<tr>
<th>Torque</th>
<th>30 Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Down</td>
</tr>
</tbody>
</table>

Select unit

The push button allows to select the unit displayed (percent %, Newton metre Nm or "foot-pound" ft-lb)

Figure 20: Units of torque

<table>
<thead>
<tr>
<th>Torque</th>
<th>50 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Torque</th>
<th>22 ft-lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down</td>
<td>%</td>
</tr>
<tr>
<td>Setup</td>
<td></td>
</tr>
</tbody>
</table>

Display in percent

100 % indication equals the max. torque indicated on the name plate of the actuator.

Example: SA 07.6 with 20 – 60 Nm.

- 100 % corresponds to 60 Nm of nominal torque.
- 50 % corresponds to 30 Nm of nominal torque.

Operation commands (S0003)

The display S0003 indicates:

- active operation commands, like e.g.: Operation in direction CLOSE or in direction OPEN
- the actual value E2 as bargraph indication and as value between 0 and 100 %.
- for setpoint control (positioner): setpoint E1
- for stepping mode or for intermediate positions with operation profile: pivot points and operation behaviour of pivot points

The navigation support (bottom row) is faded out after approx. 3 seconds and the axis/axes for pivot point display are shown.

OPEN - CLOSE control

Active operation commands (OPEN, CLOSE, ...) are shown above the bargraph display. The figure below shows the operation command in direction CLOSE.

Figure 21: Display for OPEN - CLOSE control

<table>
<thead>
<tr>
<th>Active op. command</th>
<th>OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>49.9%</td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Active op. command</th>
<th>CLOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>49.9%</td>
</tr>
<tr>
<td>Up</td>
<td>Down</td>
</tr>
</tbody>
</table>
Setpoint control

If the positioner is enabled and activated, the bargraph indication for E1 (position setpoint) is displayed.

The direction of the operation command is displayed by an arrow above the bargraph indication. The figure below shows the operation command in direction CLOSE.

Figure 22: Indication for setpoint control (positioner)

E1 Position setpoint
E2 Actual position value

Pivot point axis

The pivot points and their operation behaviour (operation profile) are shown on the pivot point axis by means of symbols.

The symbols are only displayed if at least one of the following functions is activated:

- Operation profile M0294
- Timer CLOSE M0156
- Timer OPEN M0206

Figure 23: Examples: on the left pivot points (intermediate positions); on the right stepping mode

Table 5: Symbols along the pivot point axis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pivot point (intermediate position) with operation profile</th>
<th>Stepping mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pivot point without reaction</td>
<td>End of stepping mode</td>
</tr>
<tr>
<td>▲</td>
<td>Stop during operation in direction CLOSE</td>
<td>Start of stepping mode in direction CLOSE</td>
</tr>
<tr>
<td>▼</td>
<td>Stop during operation in direction OPEN</td>
<td>Start of stepping mode in direction OPEN</td>
</tr>
<tr>
<td>◆</td>
<td>Stop during operation in directions OPEN and CLOSE</td>
<td>–</td>
</tr>
<tr>
<td>◄</td>
<td>Pause for operation in direction CLOSE</td>
<td>–</td>
</tr>
<tr>
<td>►</td>
<td>Pause for operation in direction OPEN</td>
<td>–</td>
</tr>
<tr>
<td>◊</td>
<td>Pause for operation in directions OPEN and CLOSE</td>
<td>–</td>
</tr>
</tbody>
</table>

Multiport valve positions (S0017)

In case of active multiport valve function, the display S0017 indicates a second bargraph display with set positions (valve connections) above the actual position value E2. Positions (P1, P2, ...) are displayed with a black triangle ▼. Push buttons ▲▼ are used to select positions. Both positions and the actual position value E2 are displayed in degrees.
4.2.2. Status indications according to AUMA classification

These indications are available if the parameter Diagnostic classific. M0539 is set to AUMA.

Warnings (S0005)

If a warning has occurred, the display shows S0005:
- the number of warnings occurred
- a blinking question mark after approx. 3 seconds

Not ready REMOTE (S0006)

The S0006 display shows indications of the Not ready REMOTE group.
If such an indication has occurred, the display shows S0006:
- the number of indications occurred
- a blinking crossbar after approx. 3 seconds

Fault (S0007)

If a fault has occurred, the display shows S0007:
- the number of faults occurred
- a blinking exclamation mark after approx. 3 seconds
4.2.3. Status indications according to NAMUR recommendation

These indications are available, if the parameter Diagnostic classification M0539 is set to NAMUR.

Out of Specification (S0008)

The S0008 indication shows out of specification indications according to NAMUR recommendation NE 107.

If such an indication has occurred, the display shows S0008:
- the number of indications occurred
- a blinking triangle with question mark after approx. 3 seconds

Function check (S0009)

The S0009 indication shows function check indications according to NAMUR recommendation NE 107.

If an indication has occurred via the function check, the display shows S0009:
- the number of indications occurred
- a blinking triangle with a spanner after approx. 3 seconds

Maintenance required (S0010)

The S0010 indication shows maintenance indications according to NAMUR recommendation NE 107.

If such an indication has occurred, the display shows S0010:
- the number of indications occurred
- a blinking square with an oil can after approx. 3 seconds
4.3. Indication lights of local controls

Modify indication light assignment (indications)

Different indications can be assigned to LEDs 1 – 5.

<table>
<thead>
<tr>
<th>M</th>
<th>Device configuration M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Local controls M0159</td>
</tr>
<tr>
<td></td>
<td>Indication light 1 (left) M0093</td>
</tr>
<tr>
<td></td>
<td>Indication light 2 M0094</td>
</tr>
<tr>
<td></td>
<td>Indication light 3 M0095</td>
</tr>
<tr>
<td></td>
<td>Indication light 4 M0096</td>
</tr>
<tr>
<td></td>
<td>Indication light 5 (right) M0097</td>
</tr>
<tr>
<td></td>
<td>Signal interm. pos. M0167</td>
</tr>
</tbody>
</table>

Default values (Europe):

Indication light 1 (left) = End p. CLOSED, blink
Indication light 2 = Torque fault CLOSE
Indication light 3 = Thermal fault
Indication light 4 = Torque fault OPEN
Indication light 5 (right) = End p. OPEN, blink
Signal interm. pos. = OPEN/CLOSED = Off

Further setting values:
Refer to <Appendix>/<Selection overview for output contacts and indication lights>

4.3.1. Indication lights: change colour

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu</th>
<th>Default values for version</th>
<th>Setting values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour ind.light 1</td>
<td>M0838</td>
<td>Yellow Green</td>
<td>Yellow Green/Yellow/green</td>
</tr>
<tr>
<td>Colour ind.light 2</td>
<td>M0839</td>
<td>Red Blue</td>
<td>Red Blue/Purple</td>
</tr>
<tr>
<td>Colour ind.light 3</td>
<td>M0840</td>
<td>Red Yellow</td>
<td>Red Yellow/Orange</td>
</tr>
<tr>
<td>Colour ind.light 4</td>
<td>M0841</td>
<td>Red Blue</td>
<td>Red Blue/Purple</td>
</tr>
<tr>
<td>Colour ind.light 5</td>
<td>M0842</td>
<td>Green Red</td>
<td>Green Red/Orange</td>
</tr>
</tbody>
</table>

User level required to make changes: AUMA (6)

Device configuration M0053
Local controls M0159
5. Signals (output signals)

5.1. Status signals via output contacts (digital outputs)

Characteristics
Output contacts are used to send status signals (e.g. reaching the end positions, selector switch position, faults...) as binary signals to the control room. Status signals only have two states: active or inactive. Active means that the conditions for the signal are fulfilled.

5.1.1. Assignment of outputs

The output contacts (outputs DOUT 1 – 12) can be assigned to various signals.

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>M0139</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>M0110</td>
</tr>
<tr>
<td>Signal DOUT 1</td>
<td>M0109</td>
</tr>
</tbody>
</table>

Default values:
- Signal DOUT 1 = Fault
- Signal DOUT 2 = End position CLOSED
- Signal DOUT 3 = End position OPEN
- Signal DOUT 4 = Selector sw. REMOTE
- Signal DOUT 5 = Torque fault CLOSE
- Signal DOUT 6 = Torque fault OPEN
- Signal DOUT 7 = End position CLOSED
- Signal DOUT 8 = End position OPEN
- Signal DOUT 9 = Selector sw. REMOTE
- Signal DOUT 10 = Torque fault CLOSE
- Signal DOUT 11 = Torque fault OPEN
- Signal DOUT 12 = Fault

Further setting values:
Refer to <Appendix>/<Selection overview for output contacts and indication lights>

5.1.2. Coding the outputs

The output signals DOUT 1 – 12 can be set either to high active or low active.

- **High active** = output contact closed = signal active
- **Low active** = output contact open = signal active

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>M0139</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>M0110</td>
</tr>
<tr>
<td>Coding DOUT 1</td>
<td>M0102</td>
</tr>
</tbody>
</table>

Default values for DOUT 1 – 12: High active

5.2. Configurable status signals

The signals described here are collective signals of various other signals which can be configured for specific users. For configuration, the individual signals can be selected from a list and activated (☑) or deactivated (☐) individually. The signals can either be assigned to a digital output (output contact) or to an indication light (LED).

For detailed information on these signals, refer to <Fault signals and warnings> chapter.

Configure status signals

Required user level: Specialist (4) or higher.
Device configuration M0053
Config. of signals M0860
Failure (Cfg) M0879
Fault (Cfg) M0880
Warnings (Cfg) M0881
Not ready REMOTE (Cfg) M0882

Default values Failure (Cfg):
☑ = activated
☑ Fault (Cfg)
☑ Warning (Cfg)
☑ Not ready REMOTE (Cfg)

Default values Fault (Cfg):
☑ = activated
☑ Configuration error
☑ Config. error REMOTE
☑ Internal error
☑ Torque fault CLOSE
☑ Torque fault OPEN
☑ Phase fault
☑ Wrong phase sequence
☑ Mains quality
☑ Thermal fault
☑ Fault no reaction

Default values Warnings (Cfg):
☑ = activated
☑ Config. warning
☑ Internal warning
☑ Wm input AIN 1
☑ Wm input AIN 2
☑ Wm setpoint position
☑ reserved
☑ Maintenance required

Default values Not ready REMOTE (Cfg):
☑ = activated
☑ Wrong oper. command
☑ Sel. sw. not REMOTE
☑ Service active
☑ Disabled
☑ EMCY stop active
☑ EMCY behav. active
☑ I/O interface
☑ Handwheel active
☑ FailState fieldbus
☑ Local STOP
5.3. Analogue signals (analogue outputs)

Conditions
The actuator is equipped with a position transmitter.

Characteristics
Depending on the actuator equipment, different signals, such as travel, torque or output speed can be recorded and issued as continuous values, e.g. 4 to 20 mA. The AC is equipped with up to two analogue outputs AOUT1 and AOUT2.

5.3.1. Assignment of analogue output 1

Designation in the wiring diagram: AOUT 1.

Required user level: AUMA (6).

Device configuration M0053

I/O interface M0139

Analogue outputs M0335

Signal AOUT1 M0131

Default value: Actual position

Information
The signal range of the output (e.g. 0/4 – 20 mA) is set via a separate parameter (Signal range AOUT1 M0129).

Setting values:

Not used
Analogue output 1 is not assigned.

Actual position
Position feedback of the valve position (actual position value E2)

Condition: Position transmitter installed in the actuator.

An adjustment to the end positions or the defined travel is not required. An automatic adjustment is done via the end positions (LSC (WSR) and LSO (WOEL)).

For torque seating, the end positions OPEN and CLOSED of the limit switching should be set as close as possible to the end positions of the valve to minimise the deviation of the feedback.

Torque
Torque feedback E6

Condition: MWG position transmitter in actuator.

The zero point is in the centre of the selected output range (10 mA or 12 mA). The torque in direction CLOSE is indicated with 0 – 10 mA or 4 – 12 mA, the torque in direction OPEN with 10 – 20 mA or 12 – 20 mA. For 127 % of the maximum nominal output torque, 0 or 4 mA are indicated in direction CLOSE, and 20 mA are indicated in direction OPEN.

Figure 33: Actual torque value

![Torque chart]

-127% = maximum nominal torque in end position CLOSED reached
+127% = maximum nominal torque in end position OPEN reached

Input AIN 1
Analogue value transmitted via AIN1 (refer to wiring diagram) to the actuator.

Condition: An analogue signal (e.g. 0 – 20 mA) is connected to the analogue input AIN 1.

Input AIN 2
Analogue value transmitted via AIN 2 (refer to wiring diagram) to the actuator.
Condition: An analogue signal (e.g. 0 – 20 mA) is connected to the analogue input AIN 2.

Speed
- Actual speed value.

5.3.2. Signal range of analogue output 1

- **Required user level:** Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>M0139</td>
</tr>
<tr>
<td>Analogue outputs</td>
<td>M0335</td>
</tr>
<tr>
<td>Signal range AOUT1</td>
<td>M0129</td>
</tr>
</tbody>
</table>

- **Default value:** 0 - 20 mA

- **Setting values:**
 - 0 - 20 mA: Analogue output 1 generates a 0 – 20 mA signal.
 - 4 - 20 mA: Analogue output 1 generates a 4 – 20 mA signal.
 - 20 - 0 mA: Analogue output 1 generates a 20 – 0 mA signal.
 - 20 - 4 mA: Analogue output 1 generates a 20 – 4 mA signal.

5.3.3. Adjustment of analogue output 1

The initial values and end values of the signal range can be corrected by ± 1 mA.

- **Example:** Parameter **Signal range AOUT1 = 4 - 20 mA**
 - The initial value (4 mA) can be adapted within a range of 3 mA to 5 mA.
 - The end value (20 mA) can be adapted within a range of 19 mA to 21 mA.

- **Required user level:** Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>M0139</td>
</tr>
<tr>
<td>Analogue outputs</td>
<td>M0335</td>
</tr>
<tr>
<td>Adjustment AOUT1</td>
<td>M0544</td>
</tr>
<tr>
<td>0/4 mA (initial value)</td>
<td>M0140</td>
</tr>
<tr>
<td>20 mA (final value)</td>
<td>M0210</td>
</tr>
</tbody>
</table>

- **Default value:** 0

- **Setting ranges:** –100...100 (–1.00 to + 1.00 mA)

5.3.4. Assignment of analogue output 2

Designation in the wiring diagram: AOUT2.

- **Required user level:** AUMA (6).

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>M0139</td>
</tr>
<tr>
<td>Analogue outputs</td>
<td>M0335</td>
</tr>
<tr>
<td>Signal AOUT 2</td>
<td>M0132</td>
</tr>
</tbody>
</table>

- **Default value:** Torque

- **Setting values:**
 - Description see <Assignment of analogue output 1>.

5.3.5. Signal range of analogue output 2

- **Required user level:** Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>M0139</td>
</tr>
<tr>
<td>Analogue outputs</td>
<td>M0335</td>
</tr>
<tr>
<td>Signal range AOUT2</td>
<td>M0130</td>
</tr>
</tbody>
</table>
Default value: 0 - 20 mA

Setting values:

<table>
<thead>
<tr>
<th>Range</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 20 mA</td>
<td>Analogue output 2 generates a 0 – 20 mA signal.</td>
</tr>
<tr>
<td>4 - 20 mA</td>
<td>Analogue output 2 generates a 4 – 20 mA signal.</td>
</tr>
<tr>
<td>20 - 0 mA</td>
<td>Analogue output 2 generates a 20 – 0 mA signal.</td>
</tr>
<tr>
<td>20 - 4 mA</td>
<td>Analogue output 2 generates a 20 – 4 mA signal.</td>
</tr>
</tbody>
</table>

5.3.6. Adjustment of analogue output 2

Initial values and end values of the signal range can be corrected by ± 1 mA.

Example: Parameter **Signal range AOUT1 = 4 – 20 mA**

The initial value (4 mA) can be adapted within a range of 3 mA to 5 mA.
The end value (20 mA) can be adapted within a range of 19 mA to 21 mA.

Required user level: **Specialist (4)** or higher.

Device configuration M0053

- **I/O interface** M0139
- **Analogue outputs** M0335
- **Adjustment AOUT 2** M0545
 - 0/4 mA (initial value) M0141
 - 20 mA (final value) M0211

Default values: 0

Setting ranges: ±100...100 (−1.00 to +1.00 mA)
6. Operation

Different operation modes (states) are available. The current operation mode is indicated in the first line of the display:

Figure 34: Example: Operation mode Off

This chapter describes the characteristics of the different operation modes; the respective functions are described in separate chapters.

6.1. Operation mode Off

The selector switch is in position 0 (OFF).

Characteristics

- The indication in the top row of the display shows: Off
- Electric operation is not possible (not even EMERGENCY operation).
- The controls remain fully operative as far as signalling is concerned (controls’ power supply is maintained).
- Push buttons ▲▼←→ can be used for menu navigation via the display.

6.2. Operation mode Local

Selector switch is in position Local control (LOCAL).

Characteristics

- The indication in the top row of the display shows: Local
- In motor operation, the actuator can be controlled locally via the push buttons (OPEN), STOP, (CLOSE).
- Faults and warnings without automatic reset can be confirmed with the push button RESET.

6.2.1. Push-to-run operation or self-retaining Local

Parameter Self-retaining Local M0076 determines the actuator operation behaviour to operation commands via push buttons on local controls.

M Customer settings M0041
Local controls M0075
Self-retaining Local M0076

Default value: OPEN and CLOSE

Setting values:

Off (push-to-run op.) Push-to-run operation activated, self-retaining off:
Actuator only runs in direction OPEN or CLOSE while an operation command is being received. The actuator stops if the operation command is cancelled.

OPEN In direction OPEN = self-retaining (in direction CLOSE push-to-run operation):
After an operation command in direction OPEN, the actuator continues to run, even if the operation command is cancelled (self-retaining). The actuator is either stopped by the STOP command or if end position OPEN or an intermediate position OPEN has been reached.

CLOSE In direction CLOSE = self-retaining (in direction OPEN push-to-run operation):
After an operation command in direction CLOSE, the actuator continues to run, even if the operation command is cancelled (self-retaining). The actuator is either stopped by the STOP command or if end position CLOSED or an intermediate position CLOSE has been reached.

OPEN and CLOSE

In directions OPEN and CLOSE = self-retaining:

After an operation command, the actuator continues to run in directions OPEN or CLOSE, even if the operation command is cancelled (self-retaining). The actuator is either stopped by the STOP command or if an end position or intermediate position has been reached.

Direct reversal of operation is not possible. Operation commands in directions OPEN or CLOSE must be stopped first by STOP command. Only then is an operation command into the opposite direction allowed.

OPEN & CL w/o STOP

In directions OPEN and CLOSE = self-retaining without stop:

Direct reversal of operation is also possible without the STOP command. However, operation can be stopped at any time by the STOP command.

Information

Hold down push buttons \(\text{OPEN} \) or \(\text{CLOSE} \) for more than 2 seconds to activate self-retaining, press STOP to reset the operation mode to push-to-run operation.

6.3. Operation mode Remote

Selector switch is in position **Remote control** (REMOTE).

![Remote control](Image)

Characteristics

The indication in the top row of the display shows the set source of the operation commands:

- **Remote** (parallel interface)
- **Remote II** (parallel interface, push button station)

Depending on the control, a distinction is made between:

- **OPEN - CLOSE control (operation mode Remote OPEN - CLOSE):**
 Control is made via binary operation commands OPEN, STOP, CLOSE.
 (or for activated Multiport Valve function via operation commands CW, CCW)

- **Setpoint control (operation mode Remote SETPOINT):**
 Control via analogue operation commands, e.g. 4 – 20 mA.

Information

- Binary signals (e.g. +24 V DC) via digital inputs are only recognised as valid operation commands if the signal is present for at least 10 ms.
- If a positioner or process controller is available, change-over between OPEN - CLOSE control (operation mode Remote OPEN - CLOSE) and setpoint control (operation mode Remote SETPOINT) is possible. Refer to chapter «Change-over between OPEN - CLOSE control and setpoint control».

6.3.1. Push-to-run operation or self-retaining Remote

Parameters **Self-retaining Remote M0100**, **Self-retaining M01193** and **Self-retaining Remote II M0101** determine the actuator operation behaviour to binary operation commands (OPEN, STOP, CLOSE or CW, CCW), which control the actuator “from Remote” via I/O interface.

Customer settings

<table>
<thead>
<tr>
<th>M</th>
<th>I/O interface M0015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-retaining Remote M0100</td>
<td></td>
</tr>
<tr>
<td>Self-retaining M01193</td>
<td></td>
</tr>
<tr>
<td>Self-retaining Remote II M0101</td>
<td></td>
</tr>
</tbody>
</table>

Default values:
Self-retaining = Off (push-to-run op.)

Self-retaining Remote II = OPEN and CLOSE

Setting values for parameters, Self-retaining Remote M0100 and Self-retaining Remote II M0101:

Off (push-to-run op.)
Actuator only runs in directions OPEN or CLOSE while an operation command is being received. The actuator stops if the operation command is cancelled.

OPEN
In direction OPEN = self-retaining (in direction CLOSE push-to-run operation):
After an operation command in direction OPEN, the actuator continues to run, even if the operation command is cancelled (self-retaining). The actuator is either stopped by the STOP command or if end position OPEN or an intermediate position OPEN has been reached.

CLOSE
In direction CLOSE = self-retaining (in direction OPEN push-to-run operation):
After an operation command in direction CLOSE, the actuator continues to run, even if the operation command is cancelled (self-retaining). The actuator is either stopped by the STOP command or if end position CLOSED or an intermediate position CLOSED has been reached.

OPEN and CLOSE
In directions OPEN and CLOSE = self-retaining:
After an operation command, the actuator continues to run in directions OPEN or CLOSE, even if the operation command is cancelled (self-retaining). The actuator is either stopped by the STOP command or if an end position or intermediate position has been reached.

Direct reversal of operation is not possible. Operation commands in directions OPEN or CLOSE must be stopped first by the STOP command. Only then is an operation command into the opposite direction allowed.

OPEN & CL w/o STOP
In directions OPEN and CLOSE = self-retaining without stop:
Direct reversal of the operation direction without STOP command is possible.
Direct reversal of operation is also possible without the STOP command. However, operation can be stopped at any time by the STOP command.

Setting values for parameter Self-retaining M01193 (for Multiport Valve function):

Off
Push-to-run operation activated, self-retaining off:
The actuator will only be operated clockwise or counterclockwise as long as an operation command (CW or CCW) is present. The actuator stops if the operation command is cancelled.

CCW
Counterclockwise (CCW) = self-retaining (clockwise = push-to-run operation):
After an operation command in CCW direction, the actuator continues to run, even if the operation command is cancelled (self-retaining). The actuator is either stopped by the STOP command or if the specified MPV position has been reached.

CW
Clockwise (CW) = self-retaining (counterclockwise = push-to-run operation):
After an operation command in CW direction, the actuator continues to run, even if the operation command is cancelled (self-retaining). The actuator is either stopped by the STOP command or if the specified MPV position has been reached.

CW and CCW
In both directions = self-retaining:
After an operation command (in CW or CCW direction), the actuator continues to run, even if the operation command is cancelled (self-retaining). The actuator is either stopped by the STOP command or if an MPV position has been reached.
Direct reversal of operation is not possible. Operation commands in CW or CCW directions must be stopped first by the STOP command. Only then is an operation command into the opposite direction allowed.

CW & CCW w/o STOP
In both directions = self-retaining without stop:
Direct reversal of the operation direction without STOP command is possible.
Direct reversal of operation is also possible without the STOP command. However, operation can be stopped at any time by the STOP command.

6.4. **Operation mode EMERGENCY**

See also: Failure function <EMERGENCY behaviour>

Characteristics
- The indication in the top row of the display shows: **EMERGENCY**
- The operation mode EMERGENCY is initiated by the EMERGENCY signal.
- The actuator performs an EMERGENCY operation. For example, the actuator moves to a predefined EMERGENCY position (i.e. end position OPEN or end position CLOSED).
- As long as the EMERGENCY signal is present, the actuator does not respond to any other operation commands (EMERGENCY signal has top priority).

![CAUTION] The actuator can start immediately when switching on! Risk of personal injuries or damage to the valve.

→ Ensure that the EMERGENCY signal is present when switching on.
→ Should the actuator start unexpectedly: Immediately set selector switch to position 0 (OFF).

6.5. **Operation mode EMERGENCY stop**

--- Option ---

See also: Failure function <EMERGENCY stop function>

Condition
An EMERGENCY stop button (latching) is either located on the electrical connection or outside.

Characteristics
- The indication in the top row of the display shows: **EMCY stop**
- In an emergency, the EMERGENCY stop button can be used to interrupt the power supply of the motor control (contactors or thyristors).
- Operation mode EMERGENCY stop supersedes all other operation modes.
- A new operation command can only be executed once the pressed EMERGENCY stop button is released and operation mode EMERGENCY Stop is cancelled using a Reset command.
- Analogue operation commands (e.g. 0/4 – 20 mA) are immediately executed again.

6.6. **Operation mode Disabled**

See also: Application function <Local controls:enable>

Characteristics
- The indication in the top row of the display shows: **Disabled**
- The operation via the push buttons on the local controls is disabled.
- Operation mode **Disabled** is possible in selector switch positions LOCAL and OFF.

Table 6: Functions depending on the selector switch position:

<table>
<thead>
<tr>
<th>Selector switch is in position</th>
<th>Function during indication = Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local control (LOCAL)</td>
<td>Actuator cannot be operated locally</td>
</tr>
<tr>
<td>0 (OFF)</td>
<td>Local menu operation not possible</td>
</tr>
</tbody>
</table>

- The **Enable LOCAL** is used for disabling or enabling via a digital input.

6.7. **Operation mode Service**

Conditions:
Set selector switch = position **Local control** (LOCAL) or **Remote control** (REMOTE).
Display indicates in the first row: **Service**

Characteristics
- The indication in the top row of the display shows: **Service**
For operation mode service, a PC or laptop with the AUMA CDT service software is required. AUMA service uses this software (e.g. during commissioning or maintenance) to perform settings at the AUMATIC.

Information

In selector position **Local control** (LOCAL), press any push button to exit the service operation mode and to activate operation mode local.
7. Basic settings for commissioning

Definition
Basic settings such as type of seating, torque and limit switching are required for safe commissioning of the AUMATIC together with the actuator. Basic settings for display, such as date and time or display formats, can be changed, if required.

7.1. Type of seating for end positions

Function
- Selection of the type of seating (according to valve manufacturer's specifications)
 - Limit seating in end position
 - Torque seating in end position
- For end positions OPEN and CLOSE, the following can be set individually:

Limit seating
The controls switch off the actuator in the end positions (OPEN/CLOSED) set via limit switching.

For end position seating via limit switching, you have to account for the overrun of the actuator. Overrun \([1]\) is the travel from switching off until complete standstill. The overrun depends on the inertia of both the actuator and the valve and the delay time of the controls.

Figure 35: Limit seating

\[P\] Tripping position
\([1]\] Overrun

Torque seating
The controls switch off the actuator in the end positions via torque switching.

For this the torque switching has to be set to the tripping torque specified by the valve manufacturer. When reaching the end position, the torque increases within the valve seat. As soon as the set tripping torque is reached, the controls automatically switch off the actuator.

In this context, the limit seating is used to signal that the limit switching will trip shortly before reaching the end position.

7.1.1. Type of seating: set

NOTICE
Valve damage due to incorrect setting!

\[\rightarrow\] The type of seating must suit the valve.
\[\rightarrow\] Only change the setting with the consent of the valve manufacturer.

Customer settings M0041
- Type of seating M0012
 - End position CLOSED M0086
 - End position OPEN M0087

Default value: Limit

Setting values:
- Limit
 - Seating in end positions via limit switching.
- Torque
 - Seating in end positions via torque switching.
Select main menu
1. Set selector switch to position 0 (OFF).

2. Press push button C Setup and hold it down for approx. 3 seconds.
 ➥ Display goes to main menu and indicates: Display...

Select parameter
3. Select parameter either:
 → click via the menu M ▶ to parameter, or
 → via direct display: press ▲ and enter ID M0086 or M0087
 ➥ Display indicates: End position CLOSED

CLOSE or OPEN
4. Use ▲▼ Up ▼ Down ▼ to select:
 → ▶ End position CLOSED
 → ▶ End position OPEN
 ➥ The black triangle ▶ indicates the current selection.

5. Press ← Ok.
 ➥ Display indicates the current setting: Limit or Torque
 ➥ The bottom row of the display indicates either:
 - Edit → continue with step 6
 - Save → continue with step 10

 ➥ Display indicates: Specialist (4)

Log on user
7. Use ▲▼ Up ▼ Down ▼ to select user:
 Information: Required user level: Specialist (4) or higher
 ➥ The symbols have the following meaning:
 - black triangle: ▶ = current setting
 - white triangle: ▷ = selection (not saved yet)

8. Press ← Ok.
 ➥ Display indicates: Password 0***

9. Enter password (→ enter password).
 ➥ The screen indicates the pre-set type of seating (▶ Limit or ▶ Torque) by means of a black triangle ▶.

Change settings
10. Select new setting ▲▼ Up ▼ Down ▼ resulting in the following significations:
 ➥ The symbols have the following meaning:
 - black triangle: ▶ = current setting
 - white triangle: ▷ = selection (not saved yet)

11. Confirm selection via ← Save.
 ➥ The setting for the type of seating is complete.

7.2. Torque switching

Conditions
MWG in actuator (Non-intrusive version).
For torque switches in the actuator (Intrusive version), the torque switching is set as described in the operation instructions.

Function
- Overload protection across full travel
- Tripping in end positions (for torque seating)
- Tripping in during manual operation also possible
• Indication or setting either in percent %, Newton metre Nm or in foot-pound ft-lb

Read more: <Torque monitoring> chapter

7.2.1. Torque switching: set

Once the set torque is reached, the torque switches will be tripped (overload protection of the valve).

Information
The torque switches may also trip during manual operation.

NOTICE

Valve damage due to excessive tripping torque limit setting!
→ The tripping torque must suit the valve.
→ Only change the setting with the consent of the valve manufacturer.

M ▶ Customer settings M0041
 Torque switching M0013
 Trip torque CLOSE M0088
 Trip torque OPEN M0089

Default value: According to order data

Setting range: Torque range according to actuator name plate

Select main menu
1. Set selector switch to position 0 (OFF).

Select parameter
2. Press push button C Setup and hold it down for approx. 3 seconds.
 ➥ Display goes to main menu and indicates: ▶ Display...

3. Select parameter either:
 → click via the menu M ▶ to parameter, or
 → via direct display: press ▲ and enter ID M0084.
 ➥ Display indicates: Trip torque CLOSE

CLOSE or OPEN
4. Use ▲▼ Up ▼ Down ▼ to select:
 → ▶ Trip torque CLOSE
 → ▶ Trip torque OPEN
 ➥ The black triangle ▶ indicates the current selection.

5. Press ◄ Ok.
 ➥ Display shows the set value.
 ➥ The bottom row indicates: Edit Esc

 ➥ Display indicates:
 - Specialist (4) → continue with step 7
 - in bottom row Up ▼ Down ▼ Esc → continue with step 11

User login
7. Use ▲▼ Up ▼ Down ▼ to select user:
 Information: Required user level: Specialist (4) or higher.
 ➥ The symbols have the following meanings:
 - black triangle: ▶ = current setting
 - white triangle: ▷ = selection (not saved yet)

8. Press ◄ Ok.
 ➥ Display indicates: Password 0***
9. Enter password (→ enter password).
 ➣ Display shows the set value.
 ➣ The bottom row indicates: Edit Esc

Change value
11. Enter new value for tripping torque via ▲ ▼ Up ▼ Down ▼.
 Information: The adjustable torque range is shown in round brackets.
12. Save new value via ← Save.
 ➣ The tripping torque is set.

Information
The following fault signals are issued if the torque setting performed has been reached in mid-travel:
- In the display of the local controls: Status indication S0007 Fault Torque fault OPEN or Torque fault CLOSE

The fault has to be acknowledged before the operation can be resumed. The acknowledgement is made:
1. either by an operation command in the opposite direction.
 - For Torque fault OPEN: Operation command in direction CLOSE
 - For Torque fault CLOSE: Operation command in direction OPEN
2. or, in case the torque applied is lower than the preset tripping torque:
 - in selector switch position Local control (LOCAL) via push button RESET.
 - in selector switch position Remote control (REMOTE):
 - via a digital (I/O interface) with the Reset command if a digital input is configured for RESET signal.

7.3. Limit switching

Conditions MWG in actuator (Non-intrusive version).
For torque switches in the actuator (Intrusive version), the limit switching is set as described in the operation instructions.

Functions
- Tripping in end positions (limit seating)
- Signalling the end positions (torque seating)

7.3.1. Limit switching: set

NOTICE
Valve damage at valve/gearbox due to incorrect setting!
→ When setting with motor operation: Stop actuator before reaching end of travel (press push button STOP).
→ Allow for overrun when selecting limit seating.

M ▶ Customer settings M0041
- Limit switching M0010
- Set end pos.CLOSED? M0084
- Set end pos. OPEN? M0085

Select main menu
1. Set selector switch to position 0 (OFF).
2. Press push button C and hold it down for approx. 3 seconds.
 ➣ Display goes to main menu and indicates: → Display...
Select parameter 3. Select parameter either:
 → click via the menu M ▶ to parameter, or
 → via direct display: press ▲ and enter ID M0084.

Display indicates: Set end pos.CLOSED?

CLOSED or OPEN 4. Use ▲▼ Up ▲ Down ▼ to select:
 → ▶ Set end pos.CLOSED? M0084
 → ▶ Set end pos. OPEN? M0085

The black triangle ▶ indicates the current selection.

5. Press ❯ Ok.

The display indicates either:
- Set end pos.CLOSED? CMD0009 → continue with step 9
- Set end pos. OPEN? CMD0010 → continue with step 14
- Specialist (4) → continue with step 6

Log on user 6. Use ▲▼ Up ▲ Down ▼ to select a user:

Information: Required user level: Specialist (4) or higher

The symbols have the following meaning:
- black triangle: ▶ = current setting
- white triangle: ▷ = selection (not saved yet)

7. Press ❯ Ok to confirm selected user level.

8. Enter password (➞ enter password).

The display indicates either:
- Set end pos.CLOSED? CMD0009 → continue with step 9
- Set end pos. OPEN? CMD0010 → continue with step 14

Set end position CLOSED CMD0009

9. Re-set end position CLOSED:

9.1 For large strokes: Set selector switch in position Local control (LOCAL) and operate actuator in motor operation via push button T (CLOSED) in direction of the end position.

Information: Stop actuator before reaching end of travel (press push button STOP) to avoid damage.

9.2 Engage manual operation.
9.3 Turn handwheel until valve is closed.
9.4 Turn back the handwheel by an amount equal to the overrun.
9.5 Set selector switch to position 0 (OFF).

Display indicates: Set end pos.CLOSED? Yes No

10. Press ❯ Yes to accept new end position setting.

Display indicates: End pos. CLOSED set!

The left LED is illuminated (standard version) and thus indicates that the end position CLOSED setting is complete.
11. Make selection:
 → **Edit** → back to step 9: Set end position CLOSED "once again"
 → **Esc** → back to step 4; either set end position OPEN or exit the menu.

Set end position OPEN

CMD0010

12. Re-set end position OPEN:

12.1 For large strokes: Set selector switch in position **Local control** (LOCAL)
 and operate actuator in motor operation via push button **OPEN** (OPEN) in
 direction of the end position.
 Information: Stop actuator **before** reaching end of travel (press push
 button **STOP**) to avoid damage.

12.2 Engage manual operation.

12.3 Turn handwheel until valve is open.

12.4 Turn back the handwheel by an amount equal to the overrun.

12.5 Set selector switch to position **0** (OFF).
 ➤ Display indicates: **Set end pos. OPEN? Yes No**

13. Press ✈ **Yes** to accept new end position setting.
 ➤ Display indicates: **End pos. OPEN set**
 ➤ The right LED is illuminated (standard version) and thus indicates that the end
 position setting is complete.

14. Make selection:
 → **Edit** → back to step 9: Set end position OPEN "once again"
 → **Esc** → back to step 4; either set end position CLOSED or exit the menu.

Information If an end position cannot be set: Check the type of control unit in actuator.

7.4. Date and time

After commissioning, we recommend checking and setting date and time. Date and
time are required for the event report function.

In case of a mains failure, date and time are stored. This data will only have to be
checked after a longer downtime.

M ▶ Display... M0009
Date and time M0221

Information
- The date format, e.g. day/month/year, can be changed via the parameter **Date
 format** M0310.
- The time format, e.g. 12/24h can be changed via the parameter **Time format**
 M0050.

7.5. Display formats

The indications on the display can be represented in different formats: Country-specific
spellings, for example, can be accounted for.

7.5.1. Date format

The data can be represented in day/month/year or in year/month/day.

M ▶ Display... M0009
Date format M0310

Default value: **DD.MM.YYYY**
Setting values:

<table>
<thead>
<tr>
<th>Format</th>
<th>Indication example</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM/DD/YYYY</td>
<td>01/21/2009</td>
</tr>
<tr>
<td>DD.MM.YYYY</td>
<td>21.01.2009</td>
</tr>
<tr>
<td>YYYY-MM-DD</td>
<td>2009–01–21</td>
</tr>
</tbody>
</table>

7.5.2. Time format

The time can be indicated in 12 or 24 hour format.

- **Display... M0009**
 - **Time format** M0050
 - **Default value:** 24h

Setting values:

- **12h** Indication of hour/minute/second in 12-hour format, example: 02:25:09 PM
- **24h** Indication of hour/minute/second in 24-hour format, example: 14:25:09

7.5.3. Number format

The number format determines the sign for indicating the decimal places. Either a decimal point or a decimal comma can be used to separate integral numbers and decimal places.

- **Display... M0009**
 - **Number format** M0231
 - **Default values:**
 - For English as display language = `xx.x`
 - For all other display languages = `xx,x`

Setting values:

- **xx.x** Indication of the decimal places using a decimal point, example: 20.0 mA
- **xx,x** Indication of the decimal places using a decimal comma, example: 20,0 mA

7.5.4. Torque unit

The torque can be indicated in different units.

- **Display... M0009**
 - **Torque unit** M0051
 - **Default value:** Nm

Setting values:

- **Nm** Indication in Nm
- **ft-lb** Indication in foot-pound
- **%** Indication in percent

7.5.5. Temperature unit

The temperature unit can either be displayed in Celsius [°C] or Fahrenheit [°F].

- **Display... M0009**
 - **Temperature unit** M0052
 - **Default value:** °C

Setting range: °C or °F

7.5.6. Position units

The valve position (e.g. actual position, target position) or other positions (e.g. pivot points) are indicated in percent of the travel on the AC display (default setting). By activating the parameter **Position**, you may select other physical units instead of percent to represent the positions. Furthermore, both scaling and maximum value
may be adapted. The change-over affects all screens indicating a position. This includes status pages such as S0001 S0002, but also the representation of characteristics (e.g. position-time) as well as histograms.

Activate position unit

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M</th>
<th>Display...</th>
<th>M0009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Units</td>
<td>M1205</td>
</tr>
<tr>
<td></td>
<td>Position</td>
<td>M1206</td>
</tr>
<tr>
<td></td>
<td>Activation</td>
<td>M1207</td>
</tr>
</tbody>
</table>

Default value: Function not active

Setting values:

- Function not active: <Units of position> function deactivated.
- Function active: <Units of position> function activated.

Set max. value, scaling and unit

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M</th>
<th>Display...</th>
<th>M0009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Units</td>
<td>M1205</td>
</tr>
<tr>
<td></td>
<td>Position</td>
<td>M1206</td>
</tr>
<tr>
<td></td>
<td>Max. value at 100.0 %</td>
<td>M1208</td>
</tr>
<tr>
<td></td>
<td>Scaling</td>
<td>M1209</td>
</tr>
<tr>
<td></td>
<td>Unit</td>
<td>M1210</td>
</tr>
</tbody>
</table>

7.5.7. Process factor units

Process factors (e.g. process setpoint, actual process value...) are shown in percent of travel in the AC display (default setting). By activating the parameter Process factor, you may select other physical units instead of percent. The change-over affects all screens indicating a process value.

Activate process factor units

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M</th>
<th>Display...</th>
<th>M0009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Units</td>
<td>M1205</td>
</tr>
<tr>
<td></td>
<td>Process factor</td>
<td>M1211</td>
</tr>
<tr>
<td></td>
<td>Activation</td>
<td>M1212</td>
</tr>
</tbody>
</table>

Default value: Function not active

Setting values:

- Function not active: <Process factor units> deactivated.
- Function active: <Process factor units> activated.

Set max. value, scaling and unit

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M</th>
<th>Display...</th>
<th>M0009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Units</td>
<td>M1205</td>
</tr>
<tr>
<td></td>
<td>Process factor</td>
<td>M1211</td>
</tr>
<tr>
<td></td>
<td>Max. value at 100.0 %</td>
<td>M1213</td>
</tr>
<tr>
<td></td>
<td>Scaling</td>
<td>M1214</td>
</tr>
<tr>
<td></td>
<td>Unit</td>
<td>M1215</td>
</tr>
</tbody>
</table>
7.5.8. Analogue working value units (AIN)

Activate working value units (AIN)

Required user level: Specialist (4) or higher.

M △ Display... M0009
Units M1205
Working values (AIN) M1216
Activation M1217

Default value: Function not active

Setting values:

| Function not active | <Working value units (AIN)> function deactivated. |
| Function active | <Working value units (AIN)> function activated. |

Set max. value, scaling and unit

Required user level: Specialist (4) or higher.

M △ Display... M0009
Units M1205
Working values (AIN) M1216
Max. value at 100.0 % M1217
Scaling M1218
Unit M1219

7.5.9. Analogue signal output units (AIN)

Activate signal output units (AIN)

Required user level: Specialist (4) or higher.

M △ Display... M0009
Units M1205
Signal outputs (AIN) M1221
Activation M1222

Default value: Function not active

Setting values:

| Function not active | <Signal output units (AIN)> function deactivated. |
| Function active | <Signal output units (AIN)> function activated. |

Set max. value, scaling and unit

Required user level: Specialist (4) or higher.

M △ Display... M0009
Units M1205
Signal outputs (AIN) M1221
Max. value at 100.0 % M1223
Scaling M1224
Unit M1225

7.6. Contrast

The contrast can be used to adapt the display backlight (light or dark background).

M △ Display... M0009
Contrast M0230
8. Application functions

Definition
Application functions are functions used to adapt the AC to special applications. This includes device functions, communication functions and device information. If they are enabled, these functions can be programmed by the user for his/her specific task using parameters.

8.1. Intermediate positions (pivot points)

— Option —

Conditions
The actuator is equipped with a position transmitter.

Characteristics
- With the AC, up to 8 intermediate positions (pivot points) can be set to any value between 0 % and 100 % of the travel.
- Each intermediate position can be activated or deactivated individually.
- When reaching an intermediate position, a signal can be generated.
- A hysteresis can be defined for each pivot point.

8.1.1. Intermediate positions (pivot points): define

Each intermediate position can be set to a value between 0 and 100 % of the travel.

M > Customer settings M0041
Intermediate positions M0143
Pivot points M0160
Pivot point 1 M0249

Default values: 0.0 % for all 8 intermediate positions

Setting range: 0.0 % (CLOSED) to 100.0 % (OPEN) of the travel

Information
The pivot points also apply to the <Operation profile> function.

8.1.2. Signal behaviour of intermediate positions: set

Reaching a pivot point (intermediate position) can be signalled:
- via indication lights (LEDs) of the local controls or
- via output contacts

Each pivot point (intermediate position) can be assigned a specific signal behaviour.

M > Customer settings M041
Intermediate positions M0143
Signal behaviour M0266
Signal behaviour 1 M0269

Default value: No signal

Setting values:

No signal
Behaviour A: "Off", intermediate position is not signalled.

Behaviour B: Signal is active from reaching the pivot point (P) up to end position OPEN (100 %).

Behaviour C: Signal is active from end position CLOSED (0 %) until reaching the pivot point (P).

Behaviour D: When passing the pivot point (P), a pulse signal is issued.
Figure 36: Signal behaviour (A to D) of the intermediate positions

Special characteristics of B, C and D

Behaviour of B and C: The signal is directly activated when reaching the set pivot point (P).

Behaviour D: The signal is activated shortly before reaching the set pivot point (P). The switch-on point is determined by pulse duration (+/− range around the pivot point). Pulse duration depends on parameter **Outer dead band M0148** and amounts to 1.0 % of the travel for default setting.

Information

For behaviours B and C, the signal might be omitted if, e.g. when using a positioner, pivot point (P) is not fully reached due to the dead band. In this case, behaviour D can be selected as the dead band is considered.

8.1.3. Hysteresis for intermediate positions: set

The hysteresis determines the **tripping point** of the signal.

Example

Parameter **Pivot point 6 M0253** is set to 50.0 % of the travel.

Parameter **Hysteresis 6 M0282** is set to 1.0 %.

Figure 37: Signal behaviour B, C, D for hysteresis = 1 %

P1 Switching on point (●)
P2 Switch-off point (○)
pT Pulse duration = 2 times XT + hysteresis

Required user level: **AUMA (6)**.

Customer settings M041

Intermediate positions M0143
Hysteresis M0267
Hysteresis 1 M0277

Default values: 0.5 % for all 8 positions

Setting range: 0.0 % to 5.0 % of the travel (from OPEN to CLOSED)

Information For signal behaviour D, the value XT (Outer dead band M0148 parameter) determines pulse duration pT and influences switch-on point P1.

8.2. Operation profile (operation behaviour) for intermediate positions

— Option —

Conditions Function <Positioner>, parameter Positioner M0158 = Function active (Required user level: Specialist (4) or higher)

Characteristics The function <Operation profile> can be used to define the operation behaviour of the actuator when reaching an end position. Example: The actuator stops and only continues its operation after another operation command.

This function is required in special applications to avoid water hammer, possibly also in combination with the timer.

8.2.1. Operation profile: activate

Required user level: Specialist (4) or higher.

Device configuration M0053
Application functions M0178
Activation M0212
Operation profile M0294

Default value: Function not active

Setting values:

Function not active Function <Operation profile> deactivated.
Function active Function <Operation profile> activated.

8.2.2. Operation behaviour for intermediate positions (pivot points): set

When reaching an intermediate position, the operation behaviour of the actuator may be set.

Customer settings M0041
Intermediate positions M0143
Operation behaviour M0257
Operation behaviour 1 M0258

Default value: Off

Setting values:

Off No intermediate stop, actuator continues the operation.
Stop in OPEN • Actuator stops at pivot point during operation in direction OPEN.
• Another operation command must be issued to resume operation.
• This function is not active in the operation mode Remote SETPOINT.
Stop in CLOSED • Actuator stops at pivot point during operation in direction CLOSE.
• Another operation command must be issued to resume operation.
• This function is not active in the operation mode Remote SETPOINT.
Stop in OPEN & CL. • Actuator stops automatically upon reaching the pivot point.
• Another operation command must be issued to resume operation.
• This function is not active in the operation mode Remote SETPOINT.

Off time in OPEN Actuator stops at pivot point during operation in direction OPEN. If an operation command in direction OPEN is present at the end of the pause time, the actuator
resumes operation into direction OPEN. If an operation command in direction CLOSE is present during the pause time, the pause is interrupted and operation into direction CLOSE resumed.

Off time in CLOSED
- When reaching the pivot point, the actuator stops during operation in direction CLOSE. If an operation command in direction CLOSE is present at the end of the pause time, the actuator resumes operation into direction CLOSE. If an operation command in direction OPEN is present during the pause time, the pause is interrupted and operation into direction OPEN resumed.

Off time in OPEN & CL
- Actuator stops automatically upon reaching the pivot point. If an operation command in direction OPEN or CLOSE is present at the end of the pause time, the actuator resumes operation depending on the operation command.

Information
- The actuator stops for each activated intermediate position, for which operation behaviour Stop in OPEN, Stop in CLOSED or Stop in OPEN & CL is assigned.

8.2.3. Off times for intermediate positions (pivot points): set

An off time can be defined for each pivot point.

Once a pivot point with the operation behaviour Off time in OPEN, Off time in CLOSED or Off time in OPEN & CL is reached, the AC generates the Operation pause active indication during the off time.

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M</th>
<th>Customer settings M041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intermediate positions M0143</td>
</tr>
<tr>
<td></td>
<td>Off times M0268</td>
</tr>
<tr>
<td></td>
<td>Off time 1 M0285</td>
</tr>
</tbody>
</table>

Default values: 1 s

Setting ranges: 1 s to 1,800 seconds

8.3. Two-wire control

— Option —

Conditions
- Operation mode Remote (Selector switch = position Remote control).

Characteristics
- With the function <Two-wire control>, the actuator can be operated to end position OPEN or CLOSED via a digital input.

Information
- In this function, the actuator only reacts to commands via the input OPEN/CLOSE. Other inputs to which the operation commands OPEN, STOP, CLOSE were assigned, do not have any function.

Execute operation commands via digital input:

Designation of digital input OPEN/CLOSE (wiring diagram designation: OPEN/CLOSE)

Default setting
- Input OPEN/CLOSE = **low level** (0 V DC or input open):
 - Actuator runs in direction CLOSE.
- Input OPEN/CLOSE = **high level** (standard: +24 V DC):
 - Actuator runs in direction OPEN.

Configuration of digital input

For the two-wire control, a digital input for the OPEN/CLOSE signal has to be configured.

Required user level: Specialist (4)

<table>
<thead>
<tr>
<th>M</th>
<th>Device configuration M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I/O interface M0139</td>
</tr>
<tr>
<td></td>
<td>Digital inputs M0116</td>
</tr>
</tbody>
</table>
Example

Use input DIN 5 for signal OPEN/CLOSE:

Parameter: Signal DIN 5 M0122 = OPEN/CLOSE

Information

The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 6 M0128), the input is either High active or Low active. Default setting is High active.

8.4. Positioner (operation mode Remote SETPOINT)

— Option —

Conditions

This function requires one of the following equipments within the actuator:

- Electronic control unit with MWG (Non-Intrusive version)
- Potentiometer
- Electronic position transmitter EWG/RWG

Further conditions for the positioner operation mode:

- Positioner enabled and activated.
- Operation mode Remote (selector switch = position Remote control).

Characteristics

The positioner records setpoint position E1 and actual position value E2 for comparison. Depending on the detected deviation, the actuator motor then runs in direction OPEN or CLOSE.

Information

- If the actuator is controlled via a setpoint (e.g. 0 – 20 mA), the status indication S0003 on the display shows both the setpoint position E1 and the actual position value E2.
- If the status indication S0003 only shows the actual position value E2, OPEN - CLOSE control is active: there is no setpoint control via the positioner. In this case, you have to change-over to setpoint control first, refer to <Change-over between OPEN - CLOSE control and setpoint control> chapter.

8.4.1. Positioner: activate

Required user level: Specialist (4) or higher.

M▷ Device configuration M0053

Application functions M0178

Activation M0212

Positioner M0158

Default value: Function not active

Setting values:

Function not active Function <Positioner> deactivated.

Function active Function <Positioner> activated.

8.4.2. Adaptive behaviour: switch on or off

Adaptive positioning may reduce the number of starts and compensate for the overrun of the actuator.

M▷ Customer settings M0041

Positioner M0145

Adaptive behaviour M0147

Default value: Adaptive I

Setting values:

Off Adaptive behaviour switched off.

Adaptive I Adaptive behaviour for precise positioning (high positioning accuracy).

Due to the inertia of actuator and valve, the valve position changes only slightly after switching off the actuator (overrun). The positioner determines the resulting error...
between setpoint and actual value for both directions and automatically adapts the inner dead bands X_i and therefore switching point P_2.

On the basis of the determined inner dead bands X_i and the set hysteresis (parameters Positioner hyst. OPEN M0598 or Positioner hyst. CLOSE M0599), the outer dead bands X_T are automatically determined.

This reduces the error caused by the overrun after only a few operations and a high positioning accuracy is achieved.

Figure 38: Positioner positioning behaviour

8.4.3. Overrun (inner dead band): set manually

The inner dead band determines the switch-off point of the actuator and therefore influences the overrun.

The inner dead band may be set individually for the directions OPEN and CLOSE.

Manual setting is only possible if the adaptive behaviour, parameter Adaptive behaviour M0147 is switched off.

Customer settings M0041

- Positioner M0145
- Dead band OPEN M0234
- Dead band CLOSE M0235

Default values: 0.5% for dead band OPEN and CLOSED

Setting ranges: 0.0 – 10.0% for dead band OPEN and CLOSED

Information

- Inner dead bands may not be set wider than outer dead bands.
- Inner dead bands may not be set too narrow as this may cause unnecessary switching procedures (premature wear) or oscillation of the actuator.

8.4.4. Max. error variable (outer dead band): set manually

The outer dead band determines the switching-on point of the actuator.
The motor starts if the actual value (input signal E2) or a change in nominal value is higher than the max. error variable determined by the outer dead band.

Manual setting is only possible if the adaptive behaviour, parameter Adaptive behaviour M0147 switched off.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer settings</td>
<td>M0041</td>
</tr>
<tr>
<td>Positioner</td>
<td>M0145</td>
</tr>
<tr>
<td>Outer dead band</td>
<td>M0148</td>
</tr>
</tbody>
</table>

Default value: 1.0 %
Setting range: 0.1 – 10.0 %

8.4.5. Dead time: set

The dead time prevents the operation to a new setpoint position within a pre-determined time.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer settings</td>
<td>M0041</td>
</tr>
<tr>
<td>Positioner</td>
<td>M0145</td>
</tr>
<tr>
<td>Dead time</td>
<td>M0149</td>
</tr>
</tbody>
</table>

Default value: 0.5 s
Setting range: 0.2 – 60.0 s (seconds)

Information

It must be ensured via the controls that the max. permissible number of starts of the actuator is not exceeded. This can be achieved by setting the dead time to a sufficiently high value.

8.4.6. Hysteresis for positioner: set

The hysteresis determines the switching accuracy. It can be used to reduce the number of starts for example.

This setting can only be made if the adaptive behaviour, parameter Adaptive behaviour M0147 is set to Adaptive I.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer settings</td>
<td>M0041</td>
</tr>
<tr>
<td>Positioner</td>
<td>M0145</td>
</tr>
<tr>
<td>Positioner hyst. OPEN</td>
<td>M0598</td>
</tr>
<tr>
<td>Positioner hyst. CLOSE</td>
<td>M0599</td>
</tr>
</tbody>
</table>

Default values: 0.5 % for OPEN and CLOSED
Setting range: 0.0 % to 5.0 % of the travel (from OPEN to CLOSED)

8.4.7. Closing fully/opening fully (end position tolerance for setpoint)

If the end positions cannot be reached due to inaccurate analogue setpoint signals (0/4 mA or 20 mA), a tolerance for the setpoint within the end position range can be set. If the tolerance is exceeded or not reached, the actuator continues the operation until the full end position has been reached. This ensures that the actuator opens and closes fully.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer settings</td>
<td>M0041</td>
</tr>
<tr>
<td>Positioner</td>
<td>M0145</td>
</tr>
<tr>
<td>Tolerance CLOSE</td>
<td>M0150</td>
</tr>
<tr>
<td>Tolerance OPEN</td>
<td>M0151</td>
</tr>
</tbody>
</table>

Default values:
Tolerance CLOSE = 0.0 %
Tolerance OPEN = 100.0 %

Setting ranges: (in percent of the travel)
Tolerance CLOSE = 0.0 – 5.0 %
Tolerance OPEN = 95 – 100.0 %
8.4.8. Setting range: limit

Travel can be limited in directions OPEN and/or CLOSE. This prevents end position(s) OPEN and/or CLOSED from being approached in modulating duty. The actuator stops when reaching the set limit value.

For OPEN - CLOSE control (LOCAL or REMOTE OPEN-CLOSE operation mode), this limitation is not active. The valve can then be run into the end positions either via the local controls or from remote.

Figure 39: Limitation of setting range

![Figure 39: Limitation of setting range](image)

[1] Permissible actuator travel for setpoint control
[2] Permissible actuator travel for OPEN - CLOSE control

Activate limitation

<table>
<thead>
<tr>
<th>M</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positioner M0145</td>
</tr>
<tr>
<td></td>
<td>Limit setting range M0845</td>
</tr>
</tbody>
</table>

Default value: Function not active

Setting values:

- Function not active: Limitation deactivated.
- Function active: Limitation activated.

Set limits

<table>
<thead>
<tr>
<th>M</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positioner M0145</td>
</tr>
<tr>
<td></td>
<td>Limit OPEN M0162</td>
</tr>
<tr>
<td></td>
<td>Limit CLOSE M0161</td>
</tr>
</tbody>
</table>

Default values:

- Limit OPEN = 100.0 %
- Limit CLOSE = 0.0 %

Setting ranges: 0.0 ... 100.0 % of travel

8.4.9. Change-over between OPEN - CLOSE control and setpoint control

For actuators equipped with a positioner, it is possible to change over between OPEN - CLOSE control (Remote OPEN-CLOSE) and setpoint control (Remote SETPOINT).

Condition

For the change-over, a digital input for the signal MODE has to be available and configured.

Configuration of digital input

Required user level: Specialist (4).

<table>
<thead>
<tr>
<th>M</th>
<th>Device configuration M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I/O interface M0139</td>
</tr>
<tr>
<td></td>
<td>Digital inputs M0116</td>
</tr>
</tbody>
</table>
Example

Use input DIN 1 for change-over:

Parameter: Signal DIN 1 M0118

Setting value: `MODE` (wiring diagram designation: `MODE`)

Information

The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 4 M0126), the input is either **High active** or **Low active**. Default setting of `MODE` input is **Low active**.

Change-over via digital input MODE

Switching behaviour for coding Low active:

(Default factory setting)

- Input `MODE` = **low level** (0 V DC or input open) = Remote SETPOINT
 - The actuator reacts to a setpoint signal (e.g. 0/4 – 20 mA)

- Input `MODE` = **high level** (standard: +24 V DC) = Remote OPEN-CLOSE:
 - The actuator reacts to operation commands OPEN, STOP, CLOSE.

8.4.10. **Input of setpoint position**

The setpoint position is generally led via input AIN1, but can also be led via AIN 2.

- **Required user level:** AUMA (6).

 Device configuration M0053
 I/O interface M0139

 Analogous inputs M0389
 Signal AIN 1 M0135
 Signal AIN 2 M0138

- **Default value AIN 1:** Setpoint position

8.4.11. **Input range of setpoint position**

- **Required user level:** Specialist (4) or higher.

 Device configuration M0053
 I/O interface M0139

 Analogous inputs M0389
 Low limit AIN 1 M0133
 High limit AIN 1 M0134

- **Default values:**
 - Low limit AIN 1 = 0 mA
 - High limit AIN 1 = 20 mA

- **Setting values:** 0 ... 20 mA

8.4.12. **Split Range operation**

Requirements Function

- `<Positioner>` function must be enabled and activated:

 In Split Range operation, a setpoint position E1 can be shared by up to three positioners. A typical application example is a pipeline with a bypass. The actuator mounted on the bypass reacts in the lower limit (e.g. 0 – 10 mA), the actuator on the main valve in the upper limit (e.g. 10 – 20 mA). If the setpoint position is within the setpoint range defined for the individual actuator, the actuator behaviour will be identical to standard positioner operation. If the setpoint position is higher or lower than the upper or the lower limit of the setpoint range of the respective actuator, the actuator will run to positions OPEN or CLOSED.

 The upper and lower limit of the respective actuator is defined via the analogue input. `<Input range of setpoint position>`.

 In addition, the upper and lower limit of the total target value (valid for all actuators grouped in a split range operation).
Activate split range operation

Required user level: Specialist (4) or higher.

Device configuration M0053
Application functions M0178
Activation M0212
Split range operation M01650

Default value: Function not active

Setting values:

Function not active
<Split range operation> function deactivated.

Function active
<Split range operation> function activated.

Set total target value range

The set lower limit of total target value is used as failure source for failure behaviour during split range operation. <Failure behaviour on loss of signal>

Customer settings M0041
Positioner M0145
Low limit target value M01651
High limit target value M01652

Default values:
Low limit target value = 0.0 mA
High limit target value = 20.0 mA

Setting ranges: 0.0 ... 20.0 mA

8.5. Process controller

— Option —

Requirements
This function requires one of the following equipments within the actuator:
- Electronic control unit with MWG (non-intrusive version)
- Potentiometer
- Electronic position transmitter EWG/RWG

Further conditions for the process controller operation mode:
- Process controller enabled and activated.
- Operation mode Remote (Selector switch = position Remote control).

Characteristics
The following figure illustrates the function of the process controller:

The process controller [2] receives the process setpoint E7 and the actual process value E4 (e.g. from a sensor). On the basis of both values, the process controller calculates the position setpoint E1 for positioner [3]. In turn, the positioner [3] compares this target setpoint with the actual position value E2 of the valve and issues the operation commands (OPEN - CLOSE) for the actuator.
The process controller can be used to control pressure, flow or flow rates, flow levels and temperature.

8.5.1. Process controller activation

Required user level: Specialist (4) or higher.

M▷ Device configuration M0053
Application functions M0178
Activation M0212
Process controller M0741

Default value: Function not active

Setting values:
- Function not active: <Process controller> function deactivated.
- Function active: <Process controller> function activated.

8.5.2. Process controller: set modulating behaviour

Three controller types are available to ideally adapt the modulating behaviour of the process controller to the respective application.
M > Customer settings M0041
Process controller M0742
Modulating behaviour M0887

Default value: PI controller
Setting values:

P controller
P controller immediately reacts to a control deviation (i.e. actively) and amplifies the input signal (error variable) proportionally to the set amplification. Setting parameter: Proport. gain Kp M0744

Figure 41: Step response of P controller

P controller application
For uncritical closed-loop applications allowing to accept continuous error variables in the event of failures, e.g. pressure, flow, filling level and temperature control.

PI controller
PI controllers consist of a P fraction immediately reacting to a control deviation and an I fraction for chronological integration of the input signal (error variable). Due to the additional time constant of the I fraction, the output value takes more time to reach the target status (i.e. inertia of control loop response) whereas positioning accuracy increases at the same time (lower control deviation). Parameters for setting the time constant: Reset time Ti M0745

Figure 42: Step response of PI controller

PI controller application
Quick control circuits not allowing continuous error variables, e.g. pressure, temperature and ratio control.

PID controller
Compared to the PI controller, the PID controller has an additional D fraction accounting for changes in the error variable (change rate). The D fraction quickly reacts to changes, even to minor control deviations with large output values. Parameter for setting the D fraction: Rate time Td M0746

Figure 43: Step response of PID controller

PID controller use
For precise and highly dynamic control not allowing a continuous error variable.

8.5.3. **Setpoint source (input for process setpoint)**

M > Customer settings M0041
Process controller M0742
Setpoint source M0743

Default value: I/O interface

Setting values:

- **I/O interface**
 - The process setpoint is defined via an analogue input (AIN 1 or AIN 2) of the I/O interface.

- **Internal setpoint**
 - The process setpoint is generated internally via actuator controls: parameters Internal setpoint 1 M0749 / Internal setpoint 2 M0750

Information
- To use internal setpoint 2, a digital input must be configured accordingly.

8.5.4. Behaviour on loss of process setpoint

<table>
<thead>
<tr>
<th>M</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Process controller M0742</td>
</tr>
<tr>
<td></td>
<td>Beh. setpoint failure M0747</td>
</tr>
</tbody>
</table>

Default value: Internal setpoint 1

Setting values:

- **Internal setpoint 1**
 - In case of process setpoint signal loss, the actuator controls switch to the internal setpoint 1. Parameter Internal setpoint 1 M0749

- **Internal setpoint 2**
 - In case of process setpoint signal loss, the actuator controls switch to the internal setpoint 2. Parameter Internal setpoint 2 M0750

- **Failure behaviour**
 - In case of process setpoint signal loss, failure behaviour procedure is activated. Parameter Failure behaviour M0378

- **Last setpoint**
 - In case of process setpoint signal loss, the last available process setpoint will still be used as setpoint.

8.5.5. Inverse operation

As standard, the valve is opened by the modulating actuator as soon as the actual process value falls below the process setpoint. Depending on the process, it may, however, be necessary that the valve closes as soon as the actual process value falls below the process setpoint. In this case, the respective parameters are used to set the process controller to inverse operation.

<table>
<thead>
<tr>
<th>M</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Process controller M0742</td>
</tr>
<tr>
<td></td>
<td>Inverse operation M0748</td>
</tr>
</tbody>
</table>

Default value: Function not active

Setting values:

- **Function not active**
 - Inverse operation is deactivated.

- **Function active**
 - Inverse operation is activated.

8.5.6. Internal process setpoint

An internal process setpoint may be set with this parameter. The internal process setpoint is used if:

- Parameter **Setpoint source M0743** is set to Internal setpoint or
- Parameter **Beh. setpoint failure M0747** is set to Internal setpoint 1 or Internal setpoint 2.

<table>
<thead>
<tr>
<th>M</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Process controller M0742</td>
</tr>
<tr>
<td></td>
<td>Internal setpoint 1 M0749</td>
</tr>
<tr>
<td></td>
<td>Internal setpoint 2 M0750</td>
</tr>
</tbody>
</table>

Default value: 50.0 %

Setting range: 0.0 ... 100.0 %
8.5.7. Setting procedure

The setting of the process controller largely depends on the area of controller application. A PI controller suffices for most applications.

Procedure

1. Operate the controller as PT controller, i.e. set the parameters as follows:
 - Proportional gain $K_p = 1$
 - Reset time $Ti = 1,000$ s
 - Rate time $Td = 0$

2. Double proportional gain K_p until the control loop starts to oscillate.
3. Reduce proportional gain K_p to 60% of the set value.
4. Decrease reset time Ti until the error variable equals zero.

8.5.8. Proportional amplification K_p: set

In the event of an error variable, the P portion immediately (i.e. actively) changes the position value proportionally to the error variable.

If a small error variable already requires a major valve position adjustment, the proportional gain K_p must be increased.

Information

- If the reaction is too extreme (overshoot), the value must be reduced. If the reaction is too weak, the value must be increased.

Customer settings M0041

- **Process controller M0742**
- **Proport. gain Kp M0744**

- **Default value:** 1.0
- **Setting range:** 0.1 ... 10.0

8.5.9. Reset time Ti: set

The reset time determines the I portion of the controller. The more inert a system, the higher this value should be set.

Information

- Increase Ti in case of propensity for oscillation.
- Decrease Ti if the reactions are excessively delayed.
- Starting value for fast processes (e.g. pressure): 10 s
- Starting value for slow processes (e.g. temperature): 1000 s

Customer settings M0041

- **Process controller M0742**
- **Reset time Ti M0745**

- **Default value:** 1,000 s (seconds)
- **Setting range:** 1 ... 1000 s

8.5.10. Rate time Td: set

The rate time determines the D portion of the controller. Typically, no setting is required here ($= 0$), since actuator and valve – due to the operating time – cannot react abruptly to a sudden occurrence of an error variable.

Information

- Increase Td in case of propensity for oscillation.
- Initial value for actuators: 0 s

Customer settings M0041

- **Process controller M0742**
- **Rate time Td M0746**

- **Default value:** 0 s (seconds)
- **Setting range:** 1 ... 100 s
8.5.11. Actual value source (input for actual process value)

M > Customer settings M0041
 Process controller M0742
 Actual value source M0756

Default value: I/O interface

Setting values:

I/O interface
The actual process value is defined via an analogue input (AIN 1 or AIN 2) of the I/O Interface.

8.6. Stepping mode

— Option —

Conditions
This function requires one of the following equipments within the actuator:

- MWG (Non-Intrusive version)
- Potentiometer
- Electronic position transmitter EWG/RWG

Characteristics
- With stepping mode, the operating time can be increased for the entire or any portion of the valve travel.
- Stepping mode can be individually activated for the directions OPEN and CLOSE.

Figure 44: Stepping mode

8.6.1. Stepping mode: activate

Stepping mode can be individually activated for the directions OPEN and CLOSE.

Required user level: Specialist (4) or higher.
M Device configuration M0053
Application functions M0178
Activation M0212
Timer CLOSE M0156
Timer OPEN M0206

Default value: Function not active

Setting values:
Function not active Function <Stepping mode> deactivated.
Function active Function <Stepping mode> activated.

8.6.2. Operation mode for stepping mode

Stepping mode can be activated via operation modes Local and/or Remote.

M Customer settings M0041
Timer M0142
Step mode CLOSE M0157
Step mode OPEN M0207

Default value: Off both directions

Setting values:
Off Stepping mode is switched off.
Remote Stepping mode is active in the operation modes: Remote, Remote II, Fieldbus
Local Stepping mode is active in the operation modes: Local, Service
Remote and local Stepping mode is active in the operation modes: Remote, Remote II, Fieldbus, Local, Service

Information The timer cannot be by-passed in <Operation mode EMERGENCY>.

8.6.3. Start and end of stepping mode

Start and end of stepping mode can be individually set for both directions.

M Customer settings M0041
Timer M0142
End stepping CLOSE M0152
Start stepping CLOSE M0153
Start stepping OPEN M0154
End stepping OPEN M0155

Default values:
End stepping CLOSE = 0.0 %
Start stepping CLOSE = 100.0 %
Start stepping OPEN = 0.0 %
End stepping OPEN = 100.0 %

Setting ranges:
End stepping CLOSE = 0.0 – 99.9 %
Start stepping CLOSE = 0.1 – 100.0 %
Start stepping OPEN = 0.0 – 99.9 %
End stepping OPEN = 0.1 – 100.0 %

8.6.4. On times and off times

On or off times can be set individually for directions OPEN and CLOSE.

M Customer settings M0041
Timer M0142
On time CLOSE M0163
Off time CLOSE M0164
8.7. By-pass function

— Option —

Application
The by-pass function is used, e.g. for district heating pipelines. Under high pipeline pressure, the gate valve of the main valve cannot be used, pressure compensation via by-pass valve is therefore required.

Function
Two MOVs – one main valve and a by-pass valve – are linked via enable signals By-pass Sync In and By-pass Sync Out. Operation commands can only be executed if one of the two actuators sends the enable signal to the other. Release depends on the end position. This ensures that only the following operation commands may be executed:

- The main valve can only be operated in directions OPEN or CLOSE if the by-pass valve is in end position OPEN.
- The by-pass valve can only be operated in direction CLOSE if the main valve is in end position CLOSED. However, it can always be operated in direction OPEN.

Figure 45: Function

Table 7: Main valve reaction to by-pass valve position.

<table>
<thead>
<tr>
<th>By-pass valve Position</th>
<th>Sends enable signal By-pass Sync OUT</th>
<th>Release (available operation commands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>End position OPEN</td>
<td>High level (Default: +24 V DC)</td>
<td>in directions OPEN and CLOSE</td>
</tr>
<tr>
<td>other position than end position OPEN</td>
<td>Low level (0 V DC or input open-circuit):</td>
<td>No operation possible¹)</td>
</tr>
</tbody>
</table>

¹) In case of an operation command, the "Interlock by-pass" signal is sent (no release).
Table 8: By-pass valve reactions to main valve position

<table>
<thead>
<tr>
<th>Main valve</th>
<th>By-pass valve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>Sends enable signal Bypass Sync OUT</td>
</tr>
<tr>
<td>End position CLOSED</td>
<td>High level (Standard: +24 V DC)</td>
</tr>
<tr>
<td>Other position than end position CLOSED</td>
<td>Low level (0 V DC or input open-circuit):</td>
</tr>
</tbody>
</table>

1) In case of an operation command in direction CLOSE, the "Interlock by-pass" signal is sent (no release).

EMERGENCY behaviour

The emergency behaviour of the by-pass function has the same characteristics as the <EMERGENCY behaviour> function with the following differences:

In an EMERGENCY situation, both controls receive the EMERGENCY signal at the same time. This signal starts the EMERGENCY operation specially defined for the by-pass function. (Parameter \(EMCY\) operation M0204 is therefore not available in the <EMERGENCY behaviour> function).

EMERGENCY operation procedure

1. By-pass valve is opened first.
2. Once the by-pass valve is fully opened, the main valve is closed.
3. Once the main valve is fully closed, the by-pass valve is fully opened.

Configuration of digital inputs

Required user level: Specialist (4) or higher.

Example

Use input DIN4 for signal By-pass Sync In:

Use input DIN6 for signal EMERGENCY:

Setting values:

- **Signal DIN 5 M0122 = By-pass Sync In**
 (wiring diagram designation: BYPASS SYNC IN)
- **Signal DIN 6 M0121 = EMERGENCY**
 (wiring diagram designation: NOT/EMERGENCY)

Information

The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 6 M0128), the input is either High active or Low active. Default setting is High active.

Configuration of digital output

Required user level: Specialist (4) or higher.

Example

Use output DOUT6 for signal By-pass Sync Out:

Parameter: Signal DOUT 6 M0111

Setting value: By-pass Sync Out (wiring diagram designation: BYPASS SYNC OUT)

8.7.1. Bypass function: activate

Required user level: Specialist (4) or higher.
Device configuration M0053
Application functions M0178
Activation M0212
By-pass function M0941

Default value: Function not active

Setting values:
- Function not active: Bypass function deactivated.
- Function active: Bypass function activated.

8.7.2. By-pass application: configure

The actuators for the two MOVs (valves) have to be configured according to their application (main or by-pass valve).

M ▶ Customer settings M0041
By-pass function M0942
By-pass application M0943

Default value: Main valve

Setting values:
- Main valve: Actuator for main valve.
- By-pass valve: Actuator for by-pass valve.

8.8. Lift Plug Valve (LPV)

--- Option ---

Application

A "Lift Plug Valve" is a special valve whose closing element must first be lifted out of its seat or locking position before being rotated for opening or closing the valve. Locking of the valve and/or pressure relief prior to rotation of the closing element can thus be implemented. Once the end position has been reached, the closing element has to be lowered again. Such valves are in particular used for significant pressure differences (pressure relief) and safety-related systems (locking).

Requirements

- Two actuator controls and actuators are required, one of them is considered as master actuator (MA), the other one as slave actuator (SA).
- The actuator controls of the master actuator require an additional <Parallel interface> I/O Interface 2.

Function

Due to the special design of the LPV valves, they can only be operated in OPEN-CLOSE duty (no modulating duty). For this type of duty, two actuators are required which are operated as a master-slave-system with master actuator (rotary movement) and slave actuator (stroke movement). However, only one actuator or actuator controls is "visible" at the DCS, i.e. the slave actuator is completely controlled and monitored by the master actuator. Communication between master and slave actuator is performed via the additional <Parallel interface> I/O Interface 2.
The master actuator may generally only be operated in direction OPEN or CLOSE if the slave actuator is fully opened. This is ensured by a signal of the slave actuator to the digital LPV Sync In input of the master actuator as soon as the slave actuator has reached end position OPEN. The slave actuator may generally only be operated in direction CLOSE if the master actuator is in end position OPEN or CLOSED. This is ensured by a corresponding signal of the master actuator to the digital LPV Sync In input of the slave actuator. However, it can always be operated in direction OPEN.

If the master actuator receives an operation command for direction OPEN or CLOSE, it will first send a command to the slave actuator for operation in direction OPEN. Once the slave actuator has reached end position OPEN and sends the feedback signal, the master actuator executes the requested operation command itself. After reaching the desired end position, it will request the slave actuator to run to end position CLOSED.

Example of digital input configuration

Required user level: Specialist (4)

- **Device configuration**: M0053
- **I/O interface**: M0139
- **Digital inputs**: M0116

Master actuator (MA): Use input DIN 7 for signal LPV system ok (SA),

Slave actuator:

- LPV Sync
- End position CLOSED
- Selector switch REMOTE
- System Ok
- LPV SA-OPEN
- LPV SA-CLOSE
Use input DIN 8 for signal LPV end position CLOSED (SA).
Use input DIN 9 for signal LPV Sync In.
Use input DIN 10 for signal LPV sel. sw. REM (SA):

Setting values:
- Signal DIN 7 M0383 = LPV system ok (SA)
- Signal DIN 8 M0390 = LPV end position CLOSED (SA)
- Signal DIN 9 M0391 = LPV Sync In
- Signal DIN 10 M0392 = LPV sel. sw. REM (SA)

Slave actuator (SA)
Use input DIN 1 for signal LPV Sync In,
Use input DIN 2 for signal (Run) CLOSE,
Use input DIN 3 for signal (Run) OPEN,

Setting values:
- Signal DIN 1 M0117 = LPV Sync In
- Signal DIN 2 M0120 = CLOSE
- Signal DIN 3 M0119 = OPEN

Information
The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 7 M0393), the input is either High active or Low active. Default setting is High active.

Example of digital output configuration

Required user level: Specialist (4)

<table>
<thead>
<tr>
<th>M</th>
<th>Device configuration M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I/O interface M0139</td>
</tr>
<tr>
<td></td>
<td>Digital outputs M0110</td>
</tr>
</tbody>
</table>

Master actuator (MA)
Only the outputs used for control of the slave actuator are listed, the outputs to the DCS are preset as standard (e.g. End position CLOSED, End position OPEN, Selector sw. REMOTE, Failure (Cfg))

Use output DOUT 8 for signal LPV run CLOSE (SA),
Use output DOUT 9 for signal LPV run OPEN (SA),
Use output DOUT 10 for signal LPV Sync Out,

Setting values:
- Signal DOUT 8 M0398 = LPV run CLOSE (SA)
- Signal DOUT 9 M0399 = LPV run OPEN (SA)
- Signal DOUT 10 M0400 = LPV Sync Out

Slave actuator (SA)
Use output DOUT 1 for signal System ok,
Use output DOUT 2 for signal End position CLOSED,
Use output DOUT 3 for signal LPV Sync Out,
Use output DOUT 4 for signal Selector sw. REMOTE,

Setting values:
- Signal DOUT 1 M0109 = System ok
- Signal DOUT 2 M0115 = End position CLOSED
- Signal DOUT 3 M0114 = LPV Sync Out
- Signal DOUT 4 M0113 = Selector sw. REMOTE

Information
The logic for the digital outputs may be inverted. Depending on the parameter setting (e.g. Coding DOUT 1 M0102), the input is either High active or Low active. Default setting is High active.
8.8.1. **LPV function: activate**

Required user level: **Specialist (4) or higher.**

- **Device configuration** M0053
 - **Application functions** M0178
 - **Activation** M0212
 - **LPV function** M1087

Default value: **Function not active**

Setting values:

- **Function not active** Function deactivated.
- **Function active** Function activated.

8.8.2. **LPV actuator type: configure**

Required user level: **Specialist (4) or higher.**

When using the LPV function, it must be defined for each actuator controls whether it controls the master or the slave actuator.

- **Customer settings** M0041
 - **Lift Plug Valve** M1089
 - **LPV application** M1090

Default value: **MA master actu./rotat.**

Setting values:

- **MA master actu./rotat.** Actuator controls/actuator act as master actuator is in charge of the rotation of the closing element.
- **SA slave act./stroke** Actuator controls/actuator act as slave actuator is in charge of the stroke of the closing element.

8.8.3. **Delay time of master LPV actuator: configure**

Configure delay time for operation in direction OPEN

A delay time for operation in direction OPEN can be defined in end position CLOSED of the master actuator. When reaching end position OPEN of the slave actuator, the procedure for opening valve will be delayed by this time. The master actuator will then run in direction OPEN.

Required user level: **Specialist (4) or higher.**

- **Customer settings** M0041
 - **Lift Plug Valve** M1089
 - **Delay MA direct.OPEN** M1091

Default value: **02:00.0**

Setting ranges: **00:00.0...15:00.0 min:s** (minutes:seconds)

Configure delay time for operation in direction CLOSE

A delay time for operation in direction CLOSE can be defined in end position OPEN of the master actuator. When reaching end position OPEN of the slave actuator, the procedure for closing valve will be delayed by this time. The master actuator will then run in direction CLOSE.

Required user level: **Specialist (4) or higher.**

- **Customer settings** M0041
 - **Lift Plug Valve** M1089
 - **Delay MA direct.CLOSE** M1092

Default value: **00:00.0**

Setting ranges: **00:00.0 15:00.0 min:s** (minutes:seconds)
8.8.4. Delay time of slave LPV actuator: configure

A delay time for operation in direction CLOSE of the slave actuator can be defined in end positions OPEN and CLOSED of the master actuator. When reaching end positions OPEN or CLOSED of the master actuator, the procedure for opening or closing valve will be delayed by this time. The slave actuator will then run in direction CLOSE.

Required user level: Specialist (4) or higher.

M ▶ Customer settings M0041
 Lift Plug Valve M1089
 Delay SA direct CLOSE M1093

Default value: 00:00

Setting ranges: 00:00.0 ... 15:00.0 min:s (minutes:seconds)

8.9. Multiport valve function (operation to position)

— Option —

Application

For valves not equipped with end stops (multi-turn) and with up to 12 ports (multiport valves)

Characteristics

The multiport valve function allows to directly access a valve port (position) of a valve equipped with up to 12 ports without stopping at any other port (position). Example: Operation from position 2 to 4 without stopping at position 3.

In the operation mode Local, the set position are approached as directly as possible, i.e. the direction of rotation (clockwise or counterclockwise) depends on the current position of the valve.

In operation mode Remote, up to 10 positions can either be approached with a defined direction of rotation (counterclockwise or clockwise) or as directly as possible. The actuator then operates the valve with the defined direction of rotation or as directly as possible to the defined valve attachment, irrespective of the actuator position.

Information

- The multiport valve function is only permissible in combination with an AUMA actuator and an AUMA gearbox.
- The output speed at the output drive (of the gearbox) or the valve should not exceed approx. 0.3 rpm; otherwise positioning accuracy will decrease.

Procedure for commissioning a multiport valve

1. Set/check multiport valve parameters:
 (generally, they are set in the factory prior to delivery)
 - Actuator type
 - Gear reduction ratio
 - Number of ports (positions)
 - Configuration of digital inputs
2. Define/check positions (of valve ports).
3. Set/check signal behaviour of positions.
4. Set home port (zero position).
5. Approach positions.
6. If required, perform/correct multiport valve parameter settings like inertia, dead band, backlash compensation and hysteresis.

8.9.1. Multiport valve function: activate

Required user level: Specialist (4) or higher.

M ▶ Device configuration M0053
 Application functions M0178
8.9.2. Actuator type: set/check

The actuator type is set in the factory but can be modified at a later date.

Required user level: Specialist (4) or higher.

| Customer settings M0041 |
| Multiport valve M1140 |
| Actuator type M1142 |

Default value: Actuator type set in the factory

Setting ranges: Selection list of all AUMA actuators

8.9.3. Gear reduction ratio: set/check

The reduction ratio of the gear stage of the actuator mounted to the valve gearbox must be set here. To facilitate adjustment, a selection table of supported gearboxes is available.

Required user level: Specialist (4) or higher.

| Customer settings M0041 |
| Multiport valve M1140 |
| Reduction ratio M1143 |

Default values: GS50.3

Setting values:

Table 9: Selection of gearboxes supported by AUMA

<table>
<thead>
<tr>
<th>Sizes GS 50.3 – GS 125.3</th>
<th>Sizes GS160.3 – GS 250.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS50.3</td>
<td>GS160.3</td>
</tr>
<tr>
<td>GS63.3</td>
<td>GS160.3/GZ160.3(4:1)</td>
</tr>
<tr>
<td>GS80.3</td>
<td>GS160.3/GZ160.3(8:1)</td>
</tr>
<tr>
<td>GS100.3</td>
<td>GS200.3</td>
</tr>
<tr>
<td>GS100.3/VZ2.3</td>
<td>GS200.3/GZ200.3(4:1)</td>
</tr>
<tr>
<td>GS100.3/VZ3.3</td>
<td>GS200.3/GZ200.3(8:1)</td>
</tr>
<tr>
<td>GS100.3/VZ4.3</td>
<td>GS250.3</td>
</tr>
<tr>
<td>GS125.3</td>
<td>GS250.3/GZ250.3(4:1)</td>
</tr>
<tr>
<td>GS125.3/VZ2.3</td>
<td>GS250.3/GZ250.3(8:1)</td>
</tr>
<tr>
<td>GS125.3/VZ3.3</td>
<td></td>
</tr>
<tr>
<td>GS125.3/VZ4.3</td>
<td></td>
</tr>
</tbody>
</table>

8.9.4. Number of ports (positions)

Number of valve ports (positions)

Required user level: Specialist (4) or higher.

| Customer settings M0041 |
| Multiport valve M1140 |
| Number of ports M1141 |

Default value: 8

Setting range: 0 to 12
The home port is the zero position (0° or 360° of one turn) and is consequently the starting point for all other intermediate positions.

Set the gear reduction ratio (parameter Reduction ratio M1143) and the actuator type (parameter Actuator type M1142) prior to setting the home port.

Set home port
1. Position multiport valve to zero position either via manual operation (handwheel) or via motor operation (via push buttons of local controls).
2. In a next step, confirm this position (with Yes) as home port via parameter MPV home port M1162.
 As an alternative, the home port position can also be confirmed via a signal at a digital input. To this end, a digital input has to be available and configured.

Set home port (zero position) via parameter

Required user level: Specialist (4) or higher.

Customer settings M0041
Multiport valve M1140
MPV home port M1162

Configuration of digital input

Required user level: Specialist (4).

Device configuration M0053
I/O interface M0139
Digital inputs M0116

Example
Use input DIN 5 for “Set home port” signal:

Parameter: Signal DIN 5 M0122
Setting value: Set home port (wiring diagram designation: Home port)

Information
The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 5 M0127), the input is either High active or Low active. Default setting is High active.

Each position can be set to any value between 0° and 360° (one full turn of the valve).

Prior to setting the positions, the home port must be defined (MPV home port parameter).

This corresponds to the zero position of the valve (0° or 360° of one full valve turn as well as 0 % or 100 % of position feedback).

The positions of the valve ports have to be set afterwards.

Customer settings M0041
Multiport valve M1140
Positions M1149

Setting ranges: 0.0 to 360.0°
Default values: 0.0° (for all positions)

If desired, positions can be preset in the factory.

Example configuration for a multiport valve comprising 8 ports: All 8 positions are evenly spread across 360°.

Position 1 = 0.0° (or 360°)
Position 2 = 45.0°
8.9.7. Operate to position via push buttons of the local controls

To operate to a position via push buttons of the local controls, status indication S0017 must be shown (refer to <Indications in the display>).

![Status indication of multiport valve (selector switch in position OFF)](image)

Operation in clockwise or counterclockwise direction:

When changing the selector switch to position **Local control** (LOCAL), the display changes:

![Status indication of multiport valve (selector switch in position LOCAL)](image)

As a consequence, the valve can be operated into clockwise or counterclockwise direction (display shows CW or CCW).

Direct operation to a position:

When selector switch is in position **0** (OFF), the function "Direct operation to a position via push buttons is activated via Details (push button ➔)" (display shows Esc).

![Status indication of multiport valve (selector switch in position OFF)](image)

When changing the selector switch to position **Local control** (LOCAL), the display changes for selection of the desired position:

![Status indication of multiport valve (selector switch in position LOCAL)](image)

Select the desired position (P1, P2, ...) via push buttons ▲▼ and confirm selection via Ok (push button ➔).
→ The operation is issued as soon as push button Ok is pressed.
8.9.8. Operate to position from Remote

For direct operation to position from remote, make sure that selector switch position Remote control (REMOTE) is selected.

Operation to position via digital inputs

An input (DIN) must be configured for each position (valve port).

Configuration of digital inputs

Required user level: Specialist (4) or higher.

Example

DIN4 input to operate to position 1 selecting the shortest path:

Parameter: Signal DIN 4 M0118 = Intermediate pos. 1

<table>
<thead>
<tr>
<th>Setting values for digital inputs (DIN)</th>
<th>Operation behaviour for input control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate pos. 1 to Intermediate pos. 12</td>
<td>Operation to defined position while selecting the shortest path</td>
</tr>
<tr>
<td>CW position 1 to CW position 10</td>
<td>Operation to defined position in clockwise direction</td>
</tr>
<tr>
<td>CCW position 1 to CCW position 10</td>
<td>Operation to defined position in counterclockwise direction</td>
</tr>
<tr>
<td>CW</td>
<td>Actuator operation in clockwise direction (without stop at any position)</td>
</tr>
<tr>
<td>CCW</td>
<td>Actuator operation in counterclockwise direction (without stop at any position)</td>
</tr>
</tbody>
</table>

8.9.9. Dead band

The dead band prevents operation to a new setpoint position within a specified band.

Required user level: Specialist (4) or higher.

Customer settings M0041

Multiport valve M1140

Reduction ratio M1143

Default value: 0.00°

Setting range: 0.00 – 36.0° (degrees)

8.9.10. Backlash compensation

Adjustable backlash compensation of the overall system including valve coupling.

Required user level: Specialist (4) or higher.

Customer settings M0041

Multiport valve M1140

Backlash comp. M1146

Default value: 0.00°
Setting range: 0.00 – 36.0° (degrees)

8.9.11. Signalling behaviour of positions: set/check

Reaching of a point (valve port) can be signalled:

- via indication lights (LEDs) of the local controls or
 (refer to chapters <Indications> <Indication lights>)
- via output contacts
 (refer to chapters <Indications> <Assignment of outputs>)

Signal behaviour, this means the signal behaviour upon reaching a position, is set via parameter Signal behaviour.

Customer settings M0041
Multiport valve M1140
Signal behaviour M1147

Default value: No signal

Setting values:

No signal
 A: Signal behaviour Off. Position is not signalled.
 B: Signal is active from reaching the position up to 360°.
 C: Signal is active from 0° until the position is reached.
 D: When passing the position, a pulse signal is issued. The pulse range (range +/- around the pivot point) depends on the set hysteresis.

Figure 52: Signal behaviour of positions

Information
The set signal behaviour is valid for all positions.

The hysteresis determines the tripping point.

Example
Parameter Position 4 M1153 is set to 180° (50 % of the travel).
Parameter Hysteresis M1148 is set to 3.0°.
Figure 53: Switching behaviour for signalling behaviours B, C, D and hysteresis 3.0°.

- P1: Switch-on point (●)
- P2: Switch-off point (○)
- pT: Pulse duration = 2 times XT + hysteresis

Required user level: AUMA (6).

M
Customer settings M0041
Multiport valve M1140
Hysteresis M1148

Default values: 0.5° for all 10 intermediate positions
Setting range: 0.0° to 5.0° (degree)

8.10. Automatic deblocking

--- Option ---

Requirements
This function requires one of the following equipments within the actuator:
- MWG (Non-Intrusive version)
- Potentiometer (5 Ω)
- Electronic position transmitter EWG/RWG

Characteristics
In case of torque switch tripping in intermediate position (i.e. prior to reaching the end position), the actuator automatically attempts to reach the end position by operation into the opposite direction and executing the actual operation command once again.

This function CANNOT be combined with the functions listed below:
- Lift Plug Valve
- By-pass function
- Operation profile

Torque fault signal is suppressed during automatic deblocking. Should torque switching trip again once automatic deblocking is complete, the actuator is switched off and AC actuator controls signal a torque fault.

8.10.1. Automatic deblocking function: activate

Required user level: Specialist (4) or higher.

M
Device configuration M0053
Application functions M0178
Activation M0212
MPV function M1679

Default value: Function not active
8.10.2. Operation time for operation in opposite direction: set

The actuator controls remember the first seating position and operate the actuator for the set operation time into opposite direction.

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automatic deblocking M1680</td>
</tr>
<tr>
<td></td>
<td>Oper. time opposite M1681</td>
</tr>
</tbody>
</table>

Default value: 3 s

Setting ranges: 1 ... 60 s (seconds)

8.10.3. Number of deblocking attempts: set

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automatic deblocking M1680</td>
</tr>
<tr>
<td></td>
<td>Deblocking attempts M1682</td>
</tr>
</tbody>
</table>

Default value: 3

Setting ranges: 1 ... 5

8.10.4. Tolerance range: set

Tolerance range (+/-) for original torque seating position, within which a torque fault will be signalled after unsuccessful automatic deblocking.

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automatic deblocking M1680</td>
</tr>
<tr>
<td></td>
<td>Tolerance range M1683</td>
</tr>
</tbody>
</table>

Default value: 10 %

Setting ranges: 5 ... 30 % (percentage of operating time into opposite direction)

8.11. Heater system and heaters

Possible components:
- Heater system within the actuator controls
- Heaters within the actuator:
 - Control unit heater in switch compartment
 - Motor heater (within motor housing)

8.11.1. Heater system within the actuator controls

The heater system is generally used for low temperature (in low temperature version up to –60 °C). For an installed heater system, the other heaters (control unit, motor heater) will also be connected to the heater system.

Wiring diagram designation: R5 H

Marking of variants within the wiring diagram code (position 11)

- **B** = 115 V AC or 230 V AC externally supplied
- **C, E, H** = internally supplied via actuator controls

The heater system is temperature-controlled. The heater system will automatically be activated for a temperature range between –5 °C and –10 °C and ensures that the temperature within the controls housing does not fall below –20 °C.
8.11.2. Heater on control unit (actuator)

Characteristics
For AUMA actuators with AC actuator controls, a resistance type heater is installed on the control unit (within actuator switch compartment).

The heater minimises condensation within the actuator switch compartment.

Wiring diagram designation: \(R_1 \ H \)

Marking within the wiring diagram code: position 11 = A – H

Information
The proper function of the heater can be monitored. For further information, refer to <Heater system/heater monitoring>.

Activate/deactivate heater on control unit

The heater on the control unit of the actuator can be activated/deactivated. Activation/deactivation can either be permanent or automatically when exceeding/falling short of defined temperature values. An electronic control unit (MWG) is required for automatic setting.

Information
If the heater is deactivated, heater monitoring is also deactivated (parameter Heater monitor)!

Required user level: Specialist (4).

Device configuration
M0053
Actuator M0168
Heater control unit M1338

Default value: On

Setting values:
Off
Heater is deactivated.
On
Heater is activated.
Auto
Heater is automatically activated/deactivated by the actuator controls:

- For temperatures exceeding +40 °C within the switch compartment = deactivated
- For temperatures of less than +35 °C within the switch compartment = activated

8.11.3. Motor heater

The motor heater minimises condensation within the motor and improves the start-up behaviour for extremely low temperatures.

Wiring diagram designation: \(R_4 \ H \)

Marking within the wiring diagram code: position 11 = D (motor heater externally supplied), G (motor heater internally supplied)
9. Failure functions

Definition
Failure functions are started by certain events and lead to a defined action of the controls or the actuator. A failure operation can be started by a manual action (e.g. pressing an EMERGENCY stop button). In general, a failure operation is automatically started by a fault signal from a monitoring function (e.g. loss of signal).

9.1. Reversing prevention time

Application
Prevention of impermissible operation states such as: Operation command in direction OPEN, actuator still runs in direction CLOSE due to the delay time.

Characteristics
The reversing prevention time (off-time between two operation commands in opposite direction) prevents a restart for a defined interval once the motor has switched off.

Parameters and instructions for setting
Required user level: AUMA (6).

Device configuration M0053
Switchgear M0173
Revers. prevent. time M0174
Default value: 0.3 s seconds
Setting range: 0.1…30.0 s seconds

9.2. Failure behaviour on loss of signal

Characteristics
The failure behaviour can be used to define AC reaction to loss of signal or a defective signal.

Only in operation mode Remote will the failure behaviour react to a signal loss. In operation modes Local or Off, there will be no reaction.

9.2.1. Failure behaviour initiation on loss of signal

Required user level: Specialist (4) or higher.

Customer settings M0041
Failure behaviour M0378
Failure behaviour M0379
Default value: Good signal first
Setting values:

Good signal first
The <Failure behaviour> is only initiated if the monitored signal fails (falling edge). This setting ensures that if the signal is missing, the actuator will not start when switching on (Good signal first).

Immediately active
The <Failure behaviour> is immediately initiated if the monitored signal is missing (is not present).

For the setting Immediately active:

⚠️ CAUTION
The actuator can start immediately when switching on!
Risk of personal injuries or damage to the valve.

→ Ensure that the signal set under parameter Failure source M0385 is present when switching on.

→ Should the actuator start unexpectedly: Immediately set selector switch to position Local control (LOCAL) or 0 (OFF).

9.2.2. Failure source (failure reason) for a failure operation: set

Customer settings M0041
Failure behaviour M0378
Failure source M0385
9.2.3. Failure operation (reaction of the actuator) on loss of signal

The failure operation determines which action is executed by the actuator once the failure behaviour is initiated.

Customer settings M0041
- **Failure behaviour** M0378
- **Failure operation** M0384

Default value: STOP

Setting values:
- **STOP** The actuator stops in the current position.
- **CLOSE** The actuator runs to end position CLOSED.
- **OPEN** The actuator runs to end position OPEN.

Approach position
- The actuator runs to the predetermined position. Conditions:
 - The function <Positioner> is activated.
 - Parameter **Failure source** M0385 is set to I/O interface

Execute last CMD
- The actuator executes the last operation command before it is stopped.
- If the last operation command was a setpoint definition via analogue input (AIN 1/AIN 2), the lower limit of the setpoint position is used (parameter **Low limit AIN 1**/**Low limit AIN 2**). The actuator is operated to the defined end position, usually end position CLOSED.

Behaviour depending on the selector switch position:

Once the failure operation is triggered, the defined position is approached. If the actuator is then moved to another position (e.g. by manual operation), it will try to perform the set failure operation while the selector switch is in position **Remote control** (REMOTE).

Information
- To prevent a new approach to the failure position during manual operation, the selector switch must be set to position **Local control** (LOCAL) or 0 (OFF) prior to operating the handwheel.

9.2.4. Failure position: define

If the failure operation **Approach position** is set, the actuator moves to the failure position indicated here.

Required access level: Specialist (4) or higher.

Customer settings M0041
- **Failure behaviour** M0378
- **Failure position** M0387

Default value: 50.0%

Setting range: 0.0...100.0% (from end position OPEN to CLOSED)

9.2.5. Failure position MPV: define

This parameter is only available in multiport valve version.
If the **Approach position** failure operation is set, the actuator runs to the preset failure position indicated here.

Required user level: **Specialist (4)** or higher.

<table>
<thead>
<tr>
<th>Customer settings</th>
<th>M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure behaviour</td>
<td>M0378</td>
</tr>
<tr>
<td>Failure position MPV</td>
<td>M1172</td>
</tr>
<tr>
<td>Default value:</td>
<td>0.0°</td>
</tr>
<tr>
<td>Setting range:</td>
<td>0.0...360°</td>
</tr>
</tbody>
</table>

9.2.6. Delay time: set

A failure operation is only performed once the delay time has expired. This prevents a short-term loss of signal, which does not have an effect on the process, from directly starting a failure operation.

Required user level: **Specialist (4)** or higher.

<table>
<thead>
<tr>
<th>Customer settings</th>
<th>M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure behaviour</td>
<td>M0378</td>
</tr>
<tr>
<td>Delay time</td>
<td>M0386</td>
</tr>
<tr>
<td>Default value:</td>
<td>3.0 s</td>
</tr>
<tr>
<td>Setting range:</td>
<td>0.0...1,800.0 s</td>
</tr>
</tbody>
</table>

9.3. EMERGENCY behaviour

Application
The EMERGENCY behaviour can be used to determine the actuator behaviour in an emergency.

Characteristics
- The function **<EMERGENCY behaviour>** is initiated by the EMERGENCY signal.
- The actuator performs a defined EMERGENCY operation. For example, the actuator moves to a predefined EMERGENCY position (i.e. end position OPEN or end position CLOSED).
- As long as the EMERGENCY signal is present, the actuator does not respond to any other operation commands (EMERGENCY signal has top priority).
- After initiating the EMERGENCY behaviour, binary operation commands (via digital inputs) may have to be sent again.
- Analogue operation commands (e.g. 0/4 – 20 mA) are immediately executed again.

Condition
For the function **<EMERGENCY behaviour>**, a digital input for the signal EMERGENCY has to be available and configured.

Configuration of digital input

Required access level: **Specialist (4)**.

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O interface</td>
<td>M0139</td>
</tr>
<tr>
<td>Digital inputs</td>
<td>M0116</td>
</tr>
</tbody>
</table>

Example
Use input DIN 4 for signal EMERGENCY:

Parameter: **Signal DIN 4 M0118**

Setting value: EMERGENCY (wiring diagram designation: EMERGENCY)

Information
The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 4 M0126), the input is either High active or Low active. For safety reasons, the EMERGENCY signal input is generally set to Low active.
Perform EMERGENCY operation via digital input

Switching behaviour for coding Low active:
- Input EMERGENCY = low level (0 V DC or input open-circuit) EMERGENCY operation is initiated.
- Input EMERGENCY = high level (standard: +24 V DC) No EMERGENCY operation

9.3.1. EMERGENCY behaviour: activate

Required user level: Specialist (4) or higher.

Device configuration M0053
Application functions M0178
Activation M0212
EMERGENCY behaviour M0589

Default value: Function not active

Setting values:
- Function not active: Function <EMERGENCY behaviour> deactivated.
- Function active: Function <EMERGENCY behaviour> activated.

For activated EMERGENCY behaviour:

The actuator can start its operation due to an EMERGENCY signal.

Risk of personal injuries or damage to the valve.

→ For commissioning and maintenance work: Set selector switch to position 0 (OFF). Motor operation can only be interrupted in this selector switch position.

→ Should the actuator start unexpectedly: Immediately set selector switch to position 0 (OFF).

Information
EMERGENCY behaviour must be completely configured during first activation. This means the setting of the following parameters must be adapted to the required actuator behaviour in particular: Failure reaction EMCY / EMCY failure source EMCY operation mode EMCY operation EMCY position

9.3.2. EMERGENCY failure behaviour

Required user level: Specialist (4) or higher.

Customer settings M0041
EMERGENCY behaviour M0198
Failure reaction EMCY M0203

Default value: Good signal first

Setting values:
- Good signal first: The <EMERGENCY behaviour> is initiated as soon as the EMERGENCY signal changes from high to low. Example: In case of a binary EMERGENCY input from +24 V DC to 0 V. This prevents the <EMERGENCY behaviour> from being initiated immediately once the AC is switched on and no EMERGENCY signal is present.

- Immediately active: The <EMERGENCY behaviour> is initiated by a low level at the EMERGENCY signal. For this setting, the EMERGENCY has to have a high level before switching on the AC; otherwise <EMERGENCY behaviour> is initiated immediately after switching on.
For the setting **Immediately active:**

The actuator can start immediately when switching on!

Risk of personal injuries or damage to the valve.

→ Ensure that the EMERGENCY signal is present when switching on.

→ Should the actuator start unexpectedly: Immediately set selector switch to position 0 (OFF).

9.3.3. Failure source (failure reason) for an EMERGENCY operation: set

| M ▶ | Customer settings M0041
EMCY behaviour M0198
EMCY fail source M0591 |
| I/O interface | The EMERGENCY signal is present as binary signal (standard: +24 V DC) at a digital input. If this voltage (i.e. the signal) is no longer present, the EMERGENCY behaviour is initiated. |
| Active interface | If active interface fails, the EMERGENCY behaviour is initiated; e.g. when changing the command source the failure source for the EMERGENCY signal also fails. |

9.3.4. Operation mode for EMERGENCY behaviour

The EMERGENCY behaviour can be activated for the operation modes Remote and/or Local

| M ▶ | Customer settings M0041
EMCY behaviour M0198
EMCY operation mode M0202 |
Remote only	EMERGENCY behaviour is active in the operation modes: Remote, Remote II, Fieldbus
Remote and local	EMERGENCY behaviour is active in the operation modes: Remote, Remote II, Fieldbus, Local, Service
Information	In the operation mode Off (selector switch position 0), no emergency operation is performed.

9.3.5. EMERGENCY operation

The EMERGENCY operation determines which action is executed by the actuator once the EMERGENCY behaviour is initiated.

| M ▶ | Customer settings
EMCY behaviour
EMCY operation |
| Default value: STOP |
| Setting values: |
STOP	The actuator stops in the current position.
CLOSE	The actuator runs to end position CLOSED.
OPEN	The actuator runs to end position OPEN.
Approach EMCY pos	The actuator runs to the predetermined position.
9.3.6. **EMERGENCY position**

If the EMERGENCY operation \textit{Approach EMCY pos.} is set, the actuator moves to the EMERGENCY position entered here.

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Customer settings</th>
<th>M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCY behaviour</td>
<td>M0198</td>
</tr>
<tr>
<td>EMCY position</td>
<td>M0232</td>
</tr>
</tbody>
</table>

Default value: 0.0 \%

Setting range: 0.0 \% ... 100.0 \% (from end position OPEN to CLOSED)

9.3.7. **EMERGENCY position MPV**

If the EMERGENCY operation \textit{Approach EMCY pos.} is set, the actuator runs to the indicated EMERGENCY position of the multiport valve.

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Customer settings</th>
<th>M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCY behaviour</td>
<td>M0198</td>
</tr>
<tr>
<td>EMCY position MPV</td>
<td>M1171</td>
</tr>
</tbody>
</table>

Default value: 0.0°

Setting range: 0.0° ... 360.0° (degree)

9.3.8. **Torque switching: by-pass**

If the EMERGENCY signal initiates an EMERGENCY operation, the torque switching can be by-passed during this operation.

Required access level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Customer settings</th>
<th>M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCY behaviour</td>
<td>M0198</td>
</tr>
<tr>
<td>By-pass torque</td>
<td>M0199</td>
</tr>
</tbody>
</table>

Default value: Off

Setting values:

- Off: No by-pass of the torque switching.
- On: The signals of the torque switching in the actuator are by-passed.

9.3.9. **Motor protection: by-pass**

If the EMERGENCY signal initiates an EMERGENCY operation, the motor protection can be by-passed during this operation.

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Customer settings</th>
<th>M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMCY behaviour</td>
<td>M0198</td>
</tr>
<tr>
<td>Thermal by-pass</td>
<td>M0200</td>
</tr>
</tbody>
</table>

Default value: Off

Setting values:

- Off: No by-pass of motor protection.
- On: The signals of the thermoswitches or the PTC thermistors of the motor winding are by-passed.

Information It is not possible to by-pass the motor protection for actuators with explosion protection.
9.3.10. Stepping mode: by-pass

If the EMERGENCY signal initiates an EMERGENCY operation, the stepping mode can be by-passed during this operation.

Required user level: Specialist (4) or higher.

Customer settings M0041
EMCY behaviour M0198
By-pass timer M0201

Default value: Off

Setting values:

Off No by-pass of stepping mode.
On Stepping mode is by-passed.

9.3.11. Operation profile: by-pass

If the EMERGENCY signal initiates an EMERGENCY operation, the set operation profile (operation behaviour) can be by-passed during this operation.

Required user level: Specialist (4) or higher.

Customer settings M0041
EMCY behaviour M0198
By-pass operat.profile M0596

Default value: Off

Setting values:

Off No by-pass of operation profile.
On The operation profile is by-passed.

9.3.12. Interlock: by-pass

If the Interlock function is activated, you may by-pass this function during EMERGENCY operation to prevent that an enable command must be issued to perform EMERGENCY operation.

Required user level: Specialist (4) or higher.

Customer settings M0041
EMCY behaviour M0198
By-pass Interlock M0668

Default value: Off

Setting values:

Off By-pass mode is deactivated. Interlock function is even active during EMERGENCY operation.
On By-pass mode is activated. Interlock function is deactivated during EMERGENCY operation.

9.3.13. Local stop: by-pass

If activated, you may by-pass Local Stop function during an EMERGENCY operation to prevent interruption of EMERGENCY operation by pressing the push button STOP.

Required user level: Specialist (4) or higher.

Customer settings M0041
EMCY behaviour M0198
By-pass Local STOP M0668

Default value: Off

Setting values:
By-pass mode is deactivated. Local Stop function is even active during EMERGENCY operation.

By-pass mode is activated. Local Stop function is deactivated during EMERGENCY operation.

9.3.14. Delay time for EMERGENCY operation

An EMERGENCY operation is only performed once the delay time has expired. Consequently, a short-term signal failure will not have an impact on the process and will not immediately initiate an EMERGENCY operation.

Required user level: Specialist (4) or higher.

M ▶	Customer settings M0041
	EMCY behaviour M0198
	Delay time M0804

Default value: 00:01.00 min : s

Setting range: 00:00.0 ... 30:00.0 min : s

9.4. Enabling local controls

— Option —

Application
- Protection against unauthorised operation via local controls
- Protection against unauthorised parameter setting via local controls

Characteristics
The selector switch functions LOCAL and/or OFF may be enabled or disabled.

Condition
For the function <Enable local controls>, a digital input for the signal Enable LOCAL has to be available and configured.

Configuration of digital input

Required user level: Specialist (4).

M ▶	Device configuration M0053
	I/O interface M0139
	Digital inputs M0116

Example
Use input DIN 5 for signal Enable LOCAL:

Parameter: Signal DIN 5 M0122

Setting value: Enable LOCAL (wiring diagram designation: Enable LOCAL)

Information
The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 5 M0127), the input is either *High active* or *Low active*. Default setting is *High active*.

Enable/disable local controls via digital input

Switching behaviour for coding High active:
- Input Enable LOCAL = *high level* (standard: +24 V DC): Operation via local controls enabled
- Input Enable LOCAL = *low level* (0 V DC or input open): Operation via local controls disabled

9.4.1. Enabling function: activate

Required user level: Specialist (4) or higher.

M ▶	Device configuration M0053
	Application functions M0178
	Activation M0212
	Enable LOCAL M0631

Default value: Function not active
9.4.2. Enabling function behaviour

The enable behaviour determines which selector switch functions (LOCAL, OFF) require an additional enable signal.

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Setting values:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function not active</td>
</tr>
<tr>
<td>Function active</td>
</tr>
</tbody>
</table>

Customer settings
- M0041
- M0075
- M0628

Default value: Sel. sw. Local

Setting values:
- Sel. sw. Local: Disabling or enabling is only effective in operation mode LOCAL (selector switch is in position Local control). If no enable signal is present, operation via push buttons on the local controls is disabled and the display shows the following signal: Disabled.
- Sel. sw. Local + Off: Disabling or enabling is effective in operation modes LOCAL and OFF (selector switch positions Local control and Off). If no enable signal is present, operation via push buttons on the local controls is disabled and the display shows the following signal: Disabled.

9.5. Priority REMOTE

--- Option ---

Characteristics
A control signal can provide REMOTE control with priority over actuator operation via local controls (irrespective of the selector switch position).

This function uses the same input signal as the <Enabling local controls> function.

Application
No changing possibility via selector switch from LOCAL

Condition
For the <Priority REMOTE> function, a digital input for the signal Enable LOCAL has to be available and configured.

Configuration of digital input

Required user level: Specialist (4).

Example
Use input DIN 5 for signal Enable LOCAL:
- **Parameter:** Signal DIN 5 M0122
- **Setting value:** Enable LOCAL (wiring diagram designation: Enable LOCAL)

Information
The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 5 M0127), the input is either High active or Low active. Default setting is High active.

Priority REMOTE via digital input

Switching behaviour for coding High active:
- Input Enable LOCAL = high level (standard: +24 V DC): Operation via local controls enabled
- Input Enable LOCAL = low level (0 V DC or input open): Priority REMOTE: Operation via local controls disabled
9.5.1. **Priority REMOTE: activate**

Required user level: Specialist (4) or higher.

- **Device configuration** M0053
- **Application functions** M0178
- **Activation** M0212
- **Priority REMOTE** M0770

Default value: Function not active

Setting values:

- **Function not active**
<Priority REMOTE> function is deactivated.
- **Function active**
<Priority REMOTE> function is activated.

9.5.2. **Priority REMOTE behaviour**

This function determines which selector switch functions (LOCAL, OFF) require an additional enable signal.

Required user level: Specialist (4) or higher.

- **Customer settings** M0041
- **Local controls** M0075
- **Priority REMOTE** M0773

Default value: Sel. sw. Local

Setting values:

- **Sel. sw. Local**
Priority of control from REMOTE is only effective in operation mode LOCAL (selector switch is in position Local control). If no enable signal is present, operation via push buttons on the local controls is disabled, the actuator can be controlled from REMOTE and the controls indicate the symbol in the status line of the display (menu S0001).

- **Sel. sw. Local + Off**
Priority of control from REMOTE is effective in operation modes LOCAL and OFF (selector switch positions Local control and 0). If no enable signal is present, operation via push buttons on the local controls is disabled, the actuator can be controlled from REMOTE and the controls indicate the symbol in the status line of the display (menu S0001).

9.6. **Interlock (enabling operation commands)**

--- Option ---

Characteristics

- An operation command will only be executed if an additional release signal for the operation command is present.
- Enabling may be activated or deactivated individually for operation commands OPEN and CLOSE.
- Enabling can be set for the different operation modes.

Condition

For the function <Interlock>, a digital input for the signal Enable CLOSE has to be available and configured.

Configuration of digital input

Required user level: Specialist (4).

- **Device configuration** M0053
- **I/O interface** M0139
- **Digital inputs** M0116

Example

Use input DIN 5 to enable operation commands in direction CLOSE:

- **Parameter**: Signal DIN 5 M0122
- **Setting value**: Enable CLOSE (wiring diagram designation: Interlock CLOSE)
The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 5 M0127), the input is either High active or Low active. Default setting is High active.

Enable/disable commands via digital input

Switching- behaviour for coding High active:

- Input Enable OPEN = low level (0 V DC or input open): Operation command enabled.

9.6.1. Interlock: activate

Required user level: Specialist (4) or higher.

| M | Device configuration M0053
| | Application functions M0178
| | Activation M0212
| | Interlock M0663

Default value: Function not active

Setting values:

- **Function not active** Function <Interlock (enable operation commands)> deactivated.
- **Function active** Function <Interlock (enable operation commands)> activated.

9.6.2. Failure source of Interlock enable signal: set

| M | Customer settings M0041
| | Interlock M0664
| | Interlock failure source M1013

Default value: Active comm. source

Setting values:

- **Active comm. source** Signals for enabling operation commands are sent via the active interface. I.e. changing the command source also changes the failure source of the enable signal.
- **Interface** The enable signal for the operation commands must be configured as binary signal (default: +24 V DC) at a digital input (parameter: Enable OPEN/Enable CLOSE).

9.6.3. Operation mode for interlock

The additional enable signal can be activated for different operation modes.

| M | Customer settings M0041
| | Interlock M0664
| | Oper. mode Interlock M0665

Default value: Off both directions

Setting values:

- **Off** Interlock is off.
- **Remote** Interlock is active in operation modes: Remote, Remote II, Fieldbus
- **Local** Interlock is active in operation modes: Local, Service
- **Remote and local** Interlock is active in operation modes: Remote, Remote II, Fieldbus, Local, Service

9.6.4. Interlock behaviour (running direction)

The Interlock behaviour determines which selector switch functions (LOCAL, OFF) require an additional enable signal.

Required user level: Specialist (4) or higher.
9.7. Local Stop

Option

Characteristics
- The function Local Stop can be used to stop an operation from Remote locally with the push button STOP.
- All operation commands are interrupted.

Information
After releasing push button STOP, and operation command which might still be present will become active immediately.

9.7.1. Behaviour

Required user level: Specialist (4) or higher.

Setting values:
- **Off**: Push button STOP can only interrupt an operation in operation mode Local (selector switch = position Local control).
- **Sel.sw.Local + Remote**: In the operation modes Local, Remote, Remote II, EMERGENCY and Service, push button STOP interrupts an operation.
- **Disabled**: In operation mode Disabled, an interruption is NOT possible.

9.8. EMERGENCY stop function

Option

Conditions
An EMERGENCY stop button (latching) is either located on the electrical connection or outside.

Characteristics
- In an emergency, the EMERGENCY stop button can be used to interrupt the power supply of the motor control (contactors or thyristors). Possibly present operation commands with self-retaining will be reset.
- The indication in the top row of the display shows: EMCY stop.
The EMERGENCY stop button is intended for operation in an emergency. For maintenance work, the mains supply of the AC has to be switched off and protected against accidental switching on.

The EMERGENCY stop button is not available for the ACExC, but only for the weatherproof versions of the AC.

Operation commands

After having unlocked the EMERGENCY stop button, a possibly active operation command will NOT immediately be re-activated, but only respective acknowledgement by the operator. This resets the EMERGENCY stop status.

The acknowledgement is made:

- via the **RESET** push button in selector switch position **Local control** (LOCAL).
- via a digital input from Remote. Assignment: **RESET**

9.9. Partial Valve Stroke Test (PVST)

— Option —

Characteristics

The Partial Valve Stroke Test (PVST) is used to check the function of both actuator and actuator controls. During this test, the function of the valve is tested by means of partial opening or closing within a defined period of time without interrupting the process. After successful testing, actuator controls operate the actuator to its initial position.

If the test was not successful, actuator controls will generate the following signals: **PVST error** PVST abort. For monitoring the PVST, these signals must be evaluated by a PLC.

Requirements

- Position transmitter in the actuator
- Function <Positioner> activated.
- If the actuator is in safe state (caused by the failure behaviour), the test will not be performed.
- The test can only be performed during OPEN - CLOSE control. For setpoint control (modulating duty), a test cannot be performed.

For the change-over, a digital input for the signal **Execute PVST** has to be available and configured.

Configuration of digital input

Required user level: **Specialist (4)**.

Device configuration M0053

I/O interface M0139

Digital inputs M0116

Example

Use input DIN 5 for **Execute PVST** signal:

Parameter: **Signal DIN 4 M0118**
Setting value: Execute PVST (wiring diagram designation: ESD)

Information
The logic for the digital inputs may be inverted. Depending on the parameter setting (e.g. Coding DIN 4 M0126), the input is either **High active** or **Low active**. For safety reasons, the Execute PVST signal input is generally set to **Low active**.

Execute PVST via digital input

Switching behaviour for coding Low active:
- Input **Execute PVST = low level** (0 V DC or input open): No test
- Input **Execute PVST = high level** (standard: +24 V DC): Test is initiated

Execute PVST manually via push buttons of the local controls

Required user level: Specialist (4) or higher.

Device configuration M0053
Service functions M0222
Execute PVST M0850

The actuator is within the set stepping range. The initial position depends on the settings of the following parameters: **PVST behaviour** M0853, **PVST stroke** M0854.

Information
PVST can be stopped by sending a Reset command.
- local (manual), in selector switch position **local operation**, via push button **Reset**.
- From Remote, in selector switch position **Remote control** via a digital input. Assignment: **RESET**

9.9.1. PVST: activate

Required user level: Specialist (4) or higher.

Device configuration M0053
Application functions M0178
Activation M0212
PVST M0851

Default value: **Function not active**

Setting values:
- **Function not active**
 <PVST> function deactivated.
- **Function active**
 <PVST> function activated.

9.9.2. Operation mode for PVST

Required user level: Specialist (4) or higher.

Customer settings M0041
PVST M0852
PVST operation mode M0889

Default value: **Stroke**

Setting values:
- **Stroke** Stroke controlled PVST; operation across defined stroke (parameter **PVST stroke**) within a defined time (parameter **PVST monitoring**). In this operation mode, the PVST can be started in any valve position (even outside the end position).
- **End position test** Operating time controlled PVST; operation within a defined time (parameter **PVST operating time**) after leaving an end position. In this operation mode, PVST can only be started from one of the end positions.
9.9.3. Behaviour for PVST: define

The test can be performed in direction OPEN or direction CLOSE.

M ▶ Customer settings M0041
 PVST M0852
 PVST behaviour M0853

Default value: OPEN

Setting values:

OPEN Testing by operation in direction OPEN.

CLOSE Testing by operation in direction CLOSE.

9.9.4. Partial stroke for PVST: set

During stroke controlled PVST execution (parameter PVST operation mode M0889 = Stroke), this parameter determines the partial stroke for a PST.

Usually, the valve stroke amounts to 10 to 15 %. The amount of the partial stroke depends on process requirements and the required diagnostic coverage rate.

M ▶ Customer settings M0041
 PVST M0852
 PVST stroke M0854

Default value: 10.0 %

Setting range: 0.0 ... 100.0 %

9.9.5. PVST monitoring time: set

The actuator remains in the current position, if the test could not be completed within the pre-set time.

M ▶ Customer settings M0041
 PVST M0852
 PVST monitoring M0855

Default value: 01:00.0 min:s (1 minute)

Setting range: 00:01.0 ... 50:00.0 min:s (minutes:seconds)

9.9.6. PVST operating time: set

During operating time controlled PVST execution (parameter PVST operation mode M0889 = End position test), this parameter determines the permissible PVST operating time.

M ▶ Customer settings M0041
 PVST M0852
 PVST operating time M0890

Default value: 00:02.0 min:s (2 Sekunden)

Setting range: 00:00.1 ... 15:00.0 min:s (minutes:seconds)

9.9.7. PVST reverse time: set

Waiting time during PVST prior to returning to initial position.

M ▶ Customer settings M0041
 PVST M0852
 PVST reversing time M0891

Default value: 00:02.0 min:s (2 seconds)

Setting range: 00:00.1 ... 15:00.0 min:s (minutes:seconds)
9.9.8. PVST reminder

If this function is active, a signal is generated if no PVST was executed during the reminder period.

Activate reminder

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M ▶</th>
<th>Customer settings</th>
<th>PVST</th>
<th>PVST reminder</th>
<th>Default value: Function not active</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Setting values:</td>
</tr>
<tr>
<td></td>
<td>Function not active</td>
<td></td>
<td></td>
<td>Reminder not activated.</td>
</tr>
<tr>
<td></td>
<td>Function active</td>
<td></td>
<td></td>
<td>Reminder activated.</td>
</tr>
</tbody>
</table>

Set reminder period

<table>
<thead>
<tr>
<th>M ▶</th>
<th>Customer settings</th>
<th>PVST</th>
<th>PVST reminder period</th>
<th>Default value: 0 d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Setting range: 0 ... 65535 d (days)</td>
</tr>
</tbody>
</table>
10. Monitoring functions

Definition
The monitoring functions signal a warning or a fault as soon as a certain value is outside the permissible range. Faults generally cause an actuator shutdown.

10.1. Torque monitoring

Torque monitoring has the following functions:
- Valve overload protection against excessive torques (leads to switching off)
- Torque warning before overload protection tripping (only in combination with electronic control unit in the actuator)

Overload protection
Once the overload protection trips (torque exceeds set tripping torque), the actuator is stopped.

The controls generate a fault indication if:
- the excessive torque occurs **between** end positions
- the excessive torque occurs **in** the end positions and limit seating is set.

The fault indication is shown in the display:
- Status indications: S0007 Fault or S0011 Failure
 - Details: Torque fault CLOSE or Torque fault OPEN

The fault has to be acknowledged before the operation can be resumed:
1. either by an operation command in the opposite direction.
 - For Torque fault CLOSE: Operation command in direction OPEN
 - For Torque fault OPEN: Operation command in direction CLOSE
2. or, in case the torque applied is lower than the preset tripping torque after tripping:
 - via the RESET push button in selector switch position **Local control** (LOCAL).

Depending on the version, tripping torques for overload protection are either set via switches in the actuator or via software parameters in the controls. For the settings, refer to <Torque switching> chapter.

Torque warning

Requirements
Actuator with electronic control unit (MWG).

The torque warning can be used e.g. for self-monitoring or for anticipating maintenance requirements.

Customer settings
- M0041
- M0013
- M0769
- M0768

Default value: 80 %

Setting range: 20 ... 100 % of the set nominal torque

When exceeding the set limit values, the actuator is not stopped, however, the controls generate a warning signal:
- Status indications: S0005 Warnings or S0008 Out of specification
 - Details: Torque wrn CLOSE or Torque wrn OPEN

Torque by-pass
By means of the torque by-pass, the torque monitoring is deactivated for a defined (short) time. During this interval, the full actuator torque may be used, for example, to release the actuator from a jammed end position or any other jammed position.
Valve damage due to excessive torque!

→ Only apply torque by-pass with the consent of the valve manufacturer.

<table>
<thead>
<tr>
<th>M ▶</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Torque switching M0013</td>
</tr>
<tr>
<td></td>
<td>Torque by-pass M0092</td>
</tr>
</tbody>
</table>

Default value: Function not active

Setting values:

- Function active: The torque by-pass is activated.
- Function not active: The torque by-pass is deactivated.

Time interval for torque by-pass

During the time interval set here, the torque monitoring is deactivated.

<table>
<thead>
<tr>
<th>M ▶</th>
<th>Customer settings M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Torque switching M0013</td>
</tr>
<tr>
<td></td>
<td>Torque by-pass [s] M0205</td>
</tr>
</tbody>
</table>

Default value: 0.0 s

Setting range: 0.0 ... 5.0 s seconds

Information

If torque by-pass is activated, the interval should be longer than the set time period for reversing prevention time to ensure torque by-pass will also be effective in the event of reversal of operation.

10.2. Motor protection monitoring (thermal monitoring)

In order to protect against overheating and impermissibly high temperatures at the actuator, PTC thermistors or thermostats are embedded in the motor winding. The thermostats are tripped as soon as the max. permissible winding temperature has been reached.

The actuator is switched off and the following signals are given:

- LED 3 (motor protection tripped) on the local controls is illuminated.
- Status indication: S0007 Fault or S0011 Failure
 - Details: Thermal fault

The motor has to cool down before the operation can be resumed.

Depending on the parameter setting (motor protection behaviour), the fault signal is either automatically reset or the fault signal has to be acknowledged manually.

Manual acknowledgement can be made:

- in selector switch position **Local control** (LOCAL) via push button **RESET**.
- in selector switch position **Remote control** (REMOTE) via a digital (I/O interface) with the RESET command if a digital input is configured for signal.

In addition, the AC cyclically (once per day) checks the motor protection monitoring for its proper function. If this check fails, the controls generate the fault indication: IE mot. prot. monitor

Motor protection behaviour

Required user level: AUMA (6).

<table>
<thead>
<tr>
<th>M ▶</th>
<th>Device configuration M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actuator M0168</td>
</tr>
<tr>
<td></td>
<td>Motor prot. mode M0169</td>
</tr>
</tbody>
</table>

Default values:
Non-explosion-proof actuators = **Auto**
Explosion-proof actuators = **Reset**

Setting values:

Auto
Automatic reset after the motor has cooled down.
Not possible for explosion-proof version ACExC 01.2

Reset
Manual reset.
Once the motor has cooled down, the fault has to be acknowledged (reset) manually as described above.
If required the thermal overload relay has to be reset manually. To this end, remove the cover on the back of actuator controls and operate the reset button on the thermal overload relay.

10.3. Type of duty monitoring (motor starts and running time)

This function monitors the permissible type of duty (e.g. S2 - 15 min) of the actuator. For this, controls monitor possible excess of:

- permissible motor starts (cycles) per hour
- permissible running time (on-time) per hour

If any of these values has been exceeded, the actuator will however not be stopped, but the following warning signals are issued:

- Status indications: **S0005** or **S0008**
 - Details: **Wrn on time starts**
- Status indications: **S0005** or **S0008**
 - Details: **Wrn on time running**

The warning signals will automatically be cleared if the permissible motor starts per second or the permissible running time per hour are no longer reached.

The operational info logger records the number of excesses (warnings) as well as the number of motor starts and motor running times.

Example:
Due to excess of defined starts/h or defined running time/h, the AC issues in total 4 on time warnings: two for 5 min, once for 10 min, once for 17 min. Afterwards the operating data counters contain the following values:

- On time warning 1 **M0325** = 37 min = total of all periods (5+5+10+17 min)
- On time warning 2 **M0326** = 17 min = longest period

Figure 55: Example

<table>
<thead>
<tr>
<th>[1]</th>
<th>[2]</th>
<th>[3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

- [1] Running time/h
- [2] Starts/h
- [3] On time warning

Activate on time monitoring

Required user level: **Specialist (4)** or higher.

Customer settings M0041

- On time monitoring **M0355**
10.4. Operating time monitoring

This function allows the monitoring of the operating time of the actuator. If the actuator needs longer than the set time to move from end position OPEN to end position CLOSED, a warning is signalled (the actuator is not stopped):

- Status indication S0005 Warnings
- Details: Op. time warning

The warning indication is automatically cleared once a new operation command is executed.

When the actuator moves from an intermediate position to an end position, the set monitoring time for the whole stroke is assigned in relation to the remaining stroke/travel.

Operation mode: activate

Required access level: Specialist (4) or higher.

Set permissible operating time manually

Required user level: Specialist (4) or higher.
10.5. Reaction monitoring

The AUMATIC monitors whether the actuator moves after an operation command. If no reaction is recorded at the output drive of the actuator within a set time, either a warning or a fault signal is generated depending on the setting:

- Status indications: **S0005 Warnings** or **S0008 Out of specification**
 - Details: **Wrn no reaction**
- Status indications: **S0007 Fault** or **S0011 Failure**
 - Details: **Fault no reaction**

In the event of a fault signal, the fault has to be acknowledged to be able to resume the operation. The acknowledgement is made:

- in selector switch position **Local control** (LOCAL) via push button **RESET**.
- in selector switch position **Remote control** (REMOTE) via a digital (I/O interface) with the **RESET** command if a digital input is configured for signal.

In case of operation from an intermediate position, reaction monitoring will only be performed if the actuator is equipped with a position feedback.

Activate switching off for reaction time error

Required user level: **Specialist (4)** or higher.

<table>
<thead>
<tr>
<th>M ▶ Customer settings</th>
<th>M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction monitoring</td>
<td>M0632</td>
</tr>
<tr>
<td>Actuator behaviour</td>
<td>M0633</td>
</tr>
</tbody>
</table>

Default value: **No cut-off**

Setting values:

- **No cut-off**: The reaction monitoring only issues a warning.
- **Cut-off**: The reaction monitoring issues a fault signal, the actuator is stopped.

Set reaction time

<table>
<thead>
<tr>
<th>M ▶ Customer settings</th>
<th>M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction monitoring</td>
<td>M0632</td>
</tr>
<tr>
<td>Reaction time</td>
<td>M0634</td>
</tr>
</tbody>
</table>

Default value: **15.0 s**

Setting range: **15.0 ... 300.0** seconds (0 seconds up to 5 minutes)

10.6. Motion detector

--- Option ---

Requirements Position transmitter in the actuator.

Characteristics The motion detector checks whether the actuator moves even without operation command (e.g. in manual operation or if there is no self-retaining).

Controls identify motion if the actuator moves more than the pre-set travel difference within the predefined recording time. Controls signal: **Output drive rotates**

Information Parameters for motion detection have a direct impact on reaction monitoring.

10.6.1. Motion detector: activate

Required user level: **Specialist (4)** or higher.
10.6.2. Detection time dt

Required user level: Specialist (4) or higher.

Default values:
- Detect. time dt (for potentiometer/EWG/RWG within actuator) = **00:05.0 min:s** (5 seconds)
- Detect. time dt (MWG) (for MWG within actuator) = **00:00.5 min:s** (0.5 seconds)

Setting ranges:
- Detect. time dt = 00:01.0 ... 30:00.0 min:s (minutes:seconds)
- Detect. time dt (MWG) = 00:00.1 ... 00:02.0 min:s (minutes:seconds)

10.6.3. Travel difference dx

Required user level: Specialist (4) or higher.

Default values:
- Travel diff. dx (for potentiometer/EWG/RWG within actuator) = **1.0 %**
- Travel diff. dx (MWG) (for MWG within actuator) = **3** (increments)

Setting ranges:
- Travel diff. dx = 1.0 ... 10.0 %
- Travel diff. dx (MWG) = 2 ... 20 (increments)

10.6.4. Delay time

Delay time of the signal: Handwheel oper.

Default value: **6.000 s** (seconds)

Setting range: **0.001 ... 65.535 s**

10.7. Monitoring of electronics power supply

AC actuator controls monitor the following voltages and signals a warning (refer to <Fault signals and warnings> chapter):
- Auxiliary voltage 24 V DC, e.g. for supplying the control inputs
- Voltage 24 V AC for controlling the reversing contactors, for thermoswitches and heater within the actuator and for generating the 115 V AC auxiliary voltage for the customer (option)
- Internal 24 V DC power supply of the electronics components (within the controls and in the actuator)
- External 24 V DC supply of the electronics (option)

Activate monitoring of auxiliary voltage 24 V DC

Required user level: **Specialist (4)**

M > Device configuration M051

- Monitoring functions M0645
- Monitor 24 V DC cust. M0650

Default value: Function not active

Setting values:

- **Function not active**
 - Monitoring is deactivated.
- **On**
 - Monitoring is activated. Should the auxiliary voltage 24 V DC for supplying the control inputs fail, a warning will be issued.

Activate monitoring of external supply 24 V DC

Required user level: **Specialist (4)**

M > Device configuration M0053

- Monitoring functions M0645
- Monitor 24 V DC ext. M0649

Default value: Function not active

Setting values:

- **Function not active**
 - Monitoring is deactivated.
- **On**
 - Monitoring is activated. Should the external supply 24 V DC fail, a warning will be issued.

10.8. Temperature monitoring

Characteristics
If the respective sensors are installed in the devices, the AUMATIC monitors different temperatures.

If certain temperature limits are exceeded or fallen short of, the controls either send a warning or a fault signal.

Conditions:
- for temperature within the control unit of the actuator: MWG (magnetic limit and torque transmitter)
- For motor temperature: additionally temperature sensor (PT 100) in the motor
- For gear housing temperature: additionally temperature sensor (PT 100) in the gearing

Information
Current device temperatures can also be displayed. Refer to <Display device temperatures>.

10.9. Heater system/heater monitoring

The heater system within the actuator controls housing and the heater on the control unit (within the switch compartment of the actuator) can be monitored. If the monitoring is activated the following warning will be generated if the heater system or the heater (circuit = interrupted) fails:

- In the display of the local controls, status indication **S0005 Warnings**
 - Details: Internal warning Wrn heater

For further information on the heater system and the heater refer to separate <Heater system and heater> chapter.
Activate heater system monitoring

Heater system monitoring monitors all connected heaters for failure.

Required user level: Specialist (4).

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>Monitoring functions</th>
<th>Monitor heat. system</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0053</td>
<td>M00645</td>
<td>M0647</td>
</tr>
</tbody>
</table>

Default value: Function not active

Setting values:

- **Function not active**
 - Heater monitoring is deactivated.
- **Function active**
 - Heater monitoring is activated.

Activate heater control unit monitoring

Information

If a heater system is installed within the actuator controls, heater monitoring is not activated/deactivated via this parameter, but via **Monitor heat. system M0647** parameter of the heater system.

Required user level: Specialist (4).

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>Actuator</th>
<th>Heater monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0053</td>
<td>M0168</td>
<td>M0646</td>
</tr>
</tbody>
</table>

Default value: Function not active

Setting values:

- **Function not active**
 - Heater monitoring is deactivated.
- **On**
 - Heater monitoring is activated. If the heater fails, a warning will be issued.

Information

Monitoring can only be made once the heater is activated (parameter **Heater control unit**).

Set reaction time for heater monitoring

Heater monitoring will only respond once a fault persists longer than the set monitoring time. Short-time faults occurring for less than the set monitoring time are not signalled as warning.

Required user level: AUMA (6).

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>Actuator</th>
<th>Heating sys. mon. time</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0053</td>
<td>M0168</td>
<td>M0859</td>
</tr>
</tbody>
</table>

Default value: 300.0 seconds

Setting range: 60 ... 3600 seconds (1 minute to 1 hour)

10.10. Verification of sub-assemblies

Conditions

- Actuators of the type range SA 07.2 – SA 16.2/SAR 07.2 – SAR 16.2
- MWG position transmitter in actuator

Characteristics

The controls verify whether sub-assemblies mounted in actuators and controls correspond to the desired version.

In case incorrect sub-assemblies are mounted or if sub-assemblies are missing the controls either send a warning or a fault signal.

For detailed information on this indication refer to <Fault signals and warnings> chapter.
10.11. Phase failure monitoring

Conditions: Phase failure monitoring is only valid for connections to 3-phase AC power supplies. For versions with 1-phase AC or DC, phase failure monitoring is not possible.

Characteristics: The AUMATIC monitors phase L2. If phase L2 is missing for a certain time interval, the AUMATIC still can send and receive signals and generates a fault indication. Since the AUMATIC is supplied via phases L1 and L3, the two phases cannot be monitored. In case L1 or L3 fails, the AUMATIC is inoperable and the actuator stops.

Information: In case of phase L2 loss during motor operation, this does not necessarily lead to an immediate standstill of the actuator. The reason is that the rotating motor generates the missing phase itself. This leads, however, to a reduction of the motor output torque. If the torque is sufficient for valve operation, the missing phase L2 is only detected when switching off (e.g. in an end position) and the fault signal Phase fault is generated.

Configuration of the tripping time

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase monitoring</td>
<td>M0170</td>
</tr>
<tr>
<td>Tripping time</td>
<td>M0172</td>
</tr>
</tbody>
</table>

Default value: 10.0 s

Setting range: 1.0 – 300.0 s

Information: Faults in supply voltage (e.g. voltage drops) do not generate a fault signal during the adjustable tripping time.

10.12. Phase sequence detection and correction of the direction of rotation

Conditions: The phase sequence detection is only valid for connections to 3-phase AC power supplies. For versions with 1-phase AC or DC, phase sequence detection is not possible.

Characteristics: Exchanging any two phase conductors in the 3-phase mains changes the direction of phase rotation. Should the phases L1, L2 and L3 be connected in the wrong sequence, this is detected and corrected by the AUMATIC, preventing the actuator from turning into the wrong direction.

Activate phase sequence detection and correction of direction of rotation

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase monitoring</td>
<td>M0170</td>
</tr>
<tr>
<td>Adapt rotary dir.</td>
<td>M0171</td>
</tr>
</tbody>
</table>

Default value: Function active

Setting values:

- **Function active** Function <Phase sequence detection and correction of direction of rotation> is activated.
- **Function not active** Phase sequence detection and correction of direction of rotation is deactivated.
11. Functions: activate and enable

11.1. Activate functions

Via menu **Activation** M0212, functions can be switched on (activated) or off (deactivated).

Required user level for enabling/disabling: Specialist (4) or higher.

Information Some functions require enabling. Only enabled functions are visible and can be activated or deactivated.

<table>
<thead>
<tr>
<th>Function</th>
<th>Menu</th>
<th>Enabling required</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMERGENCY behaviour</td>
<td>M0589</td>
<td>No</td>
</tr>
<tr>
<td>Timer CLOSE</td>
<td>M0156</td>
<td>No</td>
</tr>
<tr>
<td>Timer OPEN</td>
<td>M0206</td>
<td>No</td>
</tr>
<tr>
<td>Positioner</td>
<td>M0158</td>
<td>Yes</td>
</tr>
<tr>
<td>Operation profile</td>
<td>M0294</td>
<td>No</td>
</tr>
<tr>
<td>Process controller</td>
<td>M0741</td>
<td>Yes</td>
</tr>
<tr>
<td>Bluetooth</td>
<td>M0573</td>
<td>No</td>
</tr>
<tr>
<td>Enable LOCAL</td>
<td>M0631</td>
<td>Yes</td>
</tr>
<tr>
<td>Priority REMOTE</td>
<td>M0770</td>
<td>Yes</td>
</tr>
<tr>
<td>Auto change-over I/O</td>
<td>M0790</td>
<td>Yes</td>
</tr>
<tr>
<td>Interlock</td>
<td>M0663</td>
<td>Yes</td>
</tr>
<tr>
<td>PVST</td>
<td>M0851</td>
<td>Yes</td>
</tr>
<tr>
<td>By-pass function</td>
<td>M0941</td>
<td>Yes</td>
</tr>
<tr>
<td>LPV function</td>
<td>M1087</td>
<td>Yes</td>
</tr>
<tr>
<td>MPV function</td>
<td>M1139</td>
<td>Yes</td>
</tr>
<tr>
<td>Maintenance signals</td>
<td>M1136</td>
<td>No</td>
</tr>
<tr>
<td>Maintenance interval</td>
<td>M1137</td>
<td>No</td>
</tr>
<tr>
<td>Limit switch: via CDT</td>
<td>M1197</td>
<td>Yes</td>
</tr>
<tr>
<td>Automatic deblocking</td>
<td>M1677</td>
<td>Yes</td>
</tr>
<tr>
<td>Split range operation</td>
<td>M1650</td>
<td>No</td>
</tr>
<tr>
<td>Automatic deblocking</td>
<td>M1679</td>
<td>Yes</td>
</tr>
<tr>
<td>Com.: eval. REMOTE</td>
<td>M1709</td>
<td>No</td>
</tr>
</tbody>
</table>

11.2. Enable functions

Via menu **Enabling** M0179, optional functions can be enabled or disabled.

This menu is visible in the display from user level Specialist (4).

<table>
<thead>
<tr>
<th>Function</th>
<th>Menu and user level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positioner</td>
<td>M0209 AUMA (6)</td>
</tr>
<tr>
<td>Process controller</td>
<td>M0338 AUMA (6)</td>
</tr>
<tr>
<td>Enable LOCAL</td>
<td>M0630 AUMA (6)</td>
</tr>
<tr>
<td>Priority REMOTE</td>
<td>M0771 AUMA (6)</td>
</tr>
<tr>
<td>Auto change-over I/O</td>
<td>M0789 AUMA (6)</td>
</tr>
<tr>
<td>Interlock</td>
<td>M0661 AUMA (6)</td>
</tr>
<tr>
<td>PVST</td>
<td>M0856 AUMA (6)</td>
</tr>
<tr>
<td>By-pass function</td>
<td>M0940 AUMA (6)</td>
</tr>
<tr>
<td>Function</td>
<td>Menu and user level</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>LPV function</td>
<td>M1088 AUMA (6)</td>
</tr>
<tr>
<td>MPV function</td>
<td>M1138 AUMA (6)</td>
</tr>
<tr>
<td>Limit switch via CDT</td>
<td>M1198 AUMA (6)</td>
</tr>
<tr>
<td>Automatic deblocking</td>
<td>M1678 AUMA (6)</td>
</tr>
</tbody>
</table>

Information

In user level **Specialist (4)**, an additional activation password (depending on the serial number) is required for enabling the function. The activation password can only be assigned and generated by the AUMA service.
12. Service functions

The functions described here may only be changed by the AUMA service or by
authorised and trained personnel.

Menu item Service functions is only visible, if user level Specialist (4) or higher is
selected.

12.1. Direction of rotation

Characteristics

This function allows changing the direction of rotation for actuator with 3-phase AC
motors.

The direction of rotation indicates the direction into which the drive shaft rotates
around its own axis. The view is on the top of the actuator. Distinction is made
between clockwise and counterclockwise rotation.

Information

- When changing from clockwise closing to counterclockwise closing or vice
 versa, only the direction of rotation of the motor is changed. The change-over
 requires further action:
 - The wiring diagram designation is marked on the AUMATIC name plate.
 In case of a change, a new name plate with the new wiring diagram number
 has to be requested from AUMA.
 - The wiring diagram number is stored in the electronic device ID (parameter
 Wiring diagram actuator M0060). The ID has to be adapted to the new
 designation once the conversion is complete.
 - The actuator mounted to the controls must be configured for the set direc-
 tion of rotation. Subsequent conversion from clockwise closing to counter-
 clockwise closing is possible using an AUMA conversion kit.

Parameters and instructions for setting

Setting the direction of rotation using parameters is only possible for actuators with
electronic control unit/MWG (Non-intrusive version).

Valve damage due to incorrect direction of rotation!

→ For 3-phase AC motors, the rotation direction of the actuator must match the
rotation direction of the valve.

Required user level: AUMA (6).

M Device configuration M0053
Actuator M0168
Closing rotation M0176

Default value: Clockwise rotation

Setting values:

Clockwise rotation

The motor is controlled with a clockwise rotating field with the following sequence:
L1-U1, L2-U2, L3-U3 (clockwise closing).

Counterclockwise rotation

The motor is controlled with a counterclockwise rotating field with the following
sequence: L1-U3, L2-U2, L3-U1 (counterclockwise closing).

12.2. Factory setting

The factory setting corresponds to the delivery state of the AUMATIC.

When converting the controls e.g. by the AUMA service, a new factory setting can
be generated to adapt the modified configuration.

Former factory settings can be restored.

Generate new factory setting

Required user level: Service (5) or higher.
M ▶ Device configuration M0053
Service functions M0222
Create factory settings M0225
Generates new factory settings by accepting the current settings.

Restore factory setting

Required user level: Specialist (4) or higher.

M ▶ Device configuration M0053
Service functions M0222
Reset factory settings M0226
Resets the current settings to factory settings.

12.3 Languages: reload

If texts are changed or if a new display language is available, the language file can be updated from the external data carrier (SD card).

Required user level: Specialist (4) or higher.

M ▶ Device configuration M0053
Service functions M0222
Reload languages M0227

12.4 Data export

During data export the data is saved from the device to an external data carrier (SD card).

Export data

Comprehensive export of all data (parameters, operation data and event protocol).
Operation data is device-specific data.
Required user level: Service (5) or higher.

M ▶ Device configuration M0053
Service functions M0222
Export all data M0223

Export parameters

Export of all parameters. No operation data is transmitted.
Required user level: Specialist (4) or higher.

M ▶ Device configuration M0053
Service functions M0222
Export all parameters M0297

Export event report

Required user level: Specialist (4) or higher.

M ▶ Device configuration M0053
Service functions M0222
Export event report M0298

12.5 Data import

During data import, the data is transmitted to the controls from an external data carrier (SD card).

Import parameters

Import of all parameters. Operating data is not overwritten.
Required user level: Specialist (4) or higher.
12.6. Actual configuration: accept

When retrofitting controls, sub-assemblies are replaced by new sub-assemblies with different functions.

Example: Replacing the PSU (different voltage).

If the controls detect a modified sub-assembly during start up, the following fault signal is generated: **Configuration error**

Accept current actual configuration

Accept new actual configuration as target configuration.

Required user level: AUMA (6).

12.7. Firmware update

A firmware update is required in the following cases:

- Upgrade with new functions
- Corrective actions

A firmware update can be performed in the following ways:

1. via Bluetooth connection using AUMA CDT software on a laptop computer or PDA
2. via an SD card (card slot in local controls)

Firmware version

The firmware version can be displayed via the following menu:

Firmware update via SD card

The menu Update firmware is only displayed if an SD card has engaged in the card slot of the local controls.

Required access level: Service (5) or higher.

12.8. Service software AUMA CDT (Bluetooth)

AUMA CDT is a user-friendly setting and operation program for AUMA actuator controls AC 01.2.

The connection between computer (PC, laptop, PDA) and local controls is established wireless via Bluetooth interface.

Activate Bluetooth

Required user level: Specialist (4) or higher.
Default value: **Function active**

Setting values:
- Function not active
- Function activated. If the connection is active, the blue LED on the local controls is illuminated.

Addresses and device tag

Required user level: **Specialist (4)** or higher.

- **Diagnostic M0022**
- **Bluetooth M0244**
- **Device tag M0423**
- **Bluetooth address M0422**
- **Bluetooth add.partner M0576**
13. Diagnostics

Diagnostics comprise information on the device and on device sub-assemblies for support during commissioning, maintenance or corrective action.

13.1. Electronic device ID

The electronic device ID provides information about the order data (important for enquiries with the factory).

Device ID M0021

Identification M0026

Version M0062

Information on device identifications can be modified with the appropriate rights (user level).

Table 10: Information on device identifications

<table>
<thead>
<tr>
<th>Identification</th>
<th>Description</th>
<th>User level required for modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device designation M0072</td>
<td>AUMATIC device designation</td>
<td>Service (5)</td>
</tr>
<tr>
<td>Device tag M0070</td>
<td>Device ID for identification within the plant marking (e.g. KKS (Power Plant Classification System))</td>
<td>Specialist (4)</td>
</tr>
<tr>
<td>Project name M0068</td>
<td>Project name of the plant</td>
<td>Specialist (4)</td>
</tr>
<tr>
<td>Controls M0028</td>
<td>Menu with information regarding identification of the AUMATIC</td>
<td></td>
</tr>
<tr>
<td>Order no. controls M0055</td>
<td>Order number of the AUMATIC</td>
<td>Service (5)</td>
</tr>
<tr>
<td>Serial no. controls M0056</td>
<td>Serial number of AUMATIC</td>
<td>Service (5)</td>
</tr>
<tr>
<td>Wiring diagram M0059</td>
<td>Wiring diagram number of AUMATIC</td>
<td>Service (5)</td>
</tr>
<tr>
<td>Date of manufacture M0063</td>
<td>Date of manufacture of controls</td>
<td>Service (5)</td>
</tr>
<tr>
<td>Actuator M0029</td>
<td>Menu with information regarding identification of the actuator</td>
<td></td>
</tr>
<tr>
<td>Order no. actuator M0057</td>
<td>Order number of the actuator</td>
<td>Service (5)</td>
</tr>
<tr>
<td>Serial no. actuator M0220</td>
<td>Works number of actuator</td>
<td>Service (5)</td>
</tr>
<tr>
<td>Wiring diagram actuator M0060</td>
<td>Wiring diagram number of actuator</td>
<td>Service (5)</td>
</tr>
</tbody>
</table>

Table 11: Information on device version

<table>
<thead>
<tr>
<th>Version M0062</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firmware M0077</td>
<td>Firmware version</td>
</tr>
<tr>
<td>Language M0565</td>
<td>Language version</td>
</tr>
<tr>
<td>Firmware details M0515</td>
<td>Menu with further items for requesting the current Image File versions of current sub-assemblies (only visible for user level AUMA (6))</td>
</tr>
<tr>
<td>Hardware art. no. M0684</td>
<td>Menu with further items for requesting the hardware article number of the actual sub-assemblies (only visible for user level AUMA (6))</td>
</tr>
</tbody>
</table>

13.2. Diagnostic Bluetooth connection

Menu is only visible if function **Bluetooth** M0573 is activated.

Required user level: **Specialist (4)** or higher.

Diagnostic M0022

Bluetooth M0244

The following states can be checked via diagnostic:
13.3. Diagnostic Interface

Required user level: Specialist (4) or higher.

The following states can be checked via the menu:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>States DIN</td>
<td>M0245</td>
<td>Shows configuration, coding and state of the input signals.</td>
</tr>
<tr>
<td>States AIN 1</td>
<td>M0246</td>
<td>Shows configuration and current value at analogue input 1.</td>
</tr>
<tr>
<td>States AIN 2</td>
<td>M0583</td>
<td>Shows configuration and current value at analogue input 2.</td>
</tr>
<tr>
<td>States DOUT</td>
<td>M0247</td>
<td>Shows configuration, coding and state of the output signals.</td>
</tr>
<tr>
<td>States AOUT 1</td>
<td>M0248</td>
<td>Shows configuration and current value at analogue output 1.</td>
</tr>
<tr>
<td>States AOUT 2</td>
<td>M0584</td>
<td>Shows configuration and current value at analogue output 2.</td>
</tr>
<tr>
<td>Interface status</td>
<td>M0730</td>
<td>Status of the interface</td>
</tr>
</tbody>
</table>

Diagnostics of digital inputs

For the digital inputs (DIN), both coding and signal states are indicated at the input by means of symbols.

Table 12: Symbol explanation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Code</th>
<th>Signal (command)</th>
<th>Input state</th>
</tr>
</thead>
<tbody>
<tr>
<td>△</td>
<td>High active</td>
<td>Not active</td>
<td>Low level = 0 V or input open</td>
</tr>
<tr>
<td>▲</td>
<td>High active</td>
<td>Active</td>
<td>High level = Default: +24 V DC</td>
</tr>
<tr>
<td>▼</td>
<td>Low active</td>
<td>Not active</td>
<td>High level = Default: +24 V DC</td>
</tr>
<tr>
<td>▼</td>
<td>Low active</td>
<td>Active</td>
<td>Low level = 0 V or input open</td>
</tr>
</tbody>
</table>

Figure 56: Example of DIN 4 and DIN 5

- Configuration:
 - DIN 4: Operation command OPEN
 - DIN 5: Operation command for EMERGENCY behaviour
- Coding:
 - DIN 4: High active (Triangle pointing in upward direction)
 - DIN 5: Low active (Triangle pointing in downward direction)
• Signal state at input:
 - DIN 4: Not active (triangle not filled in)
 Low level = 0 V = No operation command in direction OPEN
 - DIN 5: Active (triangle is black)
 Low level = 0 V = EMERGENCY operation command is available

Diagnostic of digital outputs

For the digital outputs (DOUT), both coding and signal states are indicated at the output by means of symbols.

Table 13: Symbol explanation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Code</th>
<th>Signal (indication)</th>
<th>State output (output contact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>△</td>
<td>High active</td>
<td>Not active</td>
<td>Low = 0 (output contact not operated)</td>
</tr>
<tr>
<td>▲</td>
<td>High active</td>
<td>Active</td>
<td>High = 1 (output contact operated)</td>
</tr>
<tr>
<td>▼</td>
<td>Low active</td>
<td>Not active</td>
<td>High = 1 (output contact operated)</td>
</tr>
<tr>
<td>▼</td>
<td>Low active</td>
<td>Active</td>
<td>Low = 0 (output contact not operated)</td>
</tr>
</tbody>
</table>

Figure 57: Example of DOUT 1 and DOUT 2

Configuration:
- DOUT 1: Indication: Fault has occurred.
- DOUT 2: Indication: End position CLOSED reached

Coding:
- DOUT 1: Low active (Triangle pointing in downward direction)
- DOUT 2: High active (Triangle pointing in upward direction)

• Signal state at output:
 - DOUT 1: Not active (triangle not filled in)
 High level = +24 V DC = no indication (no fault available)
 - DOUT 2: Active (triangle is black)
 High level = +24 V DC= indication (end position CLOSED reached)

13.4. Diagnostic Position transmitter potentiometer

Menu is only visible if the actuator is equipped with potentiometer.

Required user level: Observer (1) or higher.

M ▶ Diagnostics M0022

Position transm. potenti. M0831

The following states can be checked via diagnostic:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low limit Uspan</td>
<td>M0832</td>
<td>Low limit setting of potentiometer signal range (monitoring the potentiometer span)</td>
</tr>
<tr>
<td>Vol t level diff. potenti.</td>
<td>M0833</td>
<td>Current voltage level difference of the potentiometer.</td>
</tr>
<tr>
<td>Raw val. pos. OPEN</td>
<td>M0999</td>
<td>Raw value end position OPEN</td>
</tr>
<tr>
<td>Raw val. pos. CLOSED</td>
<td>M1001</td>
<td>Raw value end position CLOSED</td>
</tr>
<tr>
<td>Potent. raw value /mV</td>
<td>M1005</td>
<td>Potentiometer raw value /mV</td>
</tr>
</tbody>
</table>

13.5. Diagnostic Position transmitter RWG

Menu is only visible if the actuator is equipped with electronic position transmitter (RWG).
Required user level: **Observer (1)** or higher.

Diagnostic Position transmitter MWG

Required user level: **Observer (1)** or higher.

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low limit RWG</td>
<td>M1010</td>
<td>Low limit setting of RWG signal for wire break monitoring</td>
</tr>
<tr>
<td>Raw val. pos.: OPEN</td>
<td>M0997</td>
<td>Raw value end position OPEN</td>
</tr>
<tr>
<td>Raw val. pos.: CLOSED</td>
<td>M0998</td>
<td>Raw value end position CLOSED</td>
</tr>
<tr>
<td>RWG raw value /mA</td>
<td>M1000</td>
<td>RWG raw value /mA</td>
</tr>
</tbody>
</table>

Diagnostic Positioner

Required user level: **Specialist (4)** or higher.

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive behaviour</td>
<td>M0626</td>
<td>Setting the adaptive behaviour of the positioner</td>
</tr>
<tr>
<td>Setpoint position</td>
<td>M0622</td>
<td>Setpoint position</td>
</tr>
<tr>
<td>Actual position</td>
<td>M0623</td>
<td>Actual position</td>
</tr>
<tr>
<td>Outer dead b.: OPEN</td>
<td>M0625</td>
<td>Outer dead band OPEN</td>
</tr>
<tr>
<td>Outer dead b.: CLOSE</td>
<td>M1002</td>
<td>Outer dead band CLOSE</td>
</tr>
<tr>
<td>Inner dead b.: OPEN</td>
<td>M1003</td>
<td>Inner dead band OPEN</td>
</tr>
<tr>
<td>Inner dead b.: CLOSE</td>
<td>M1004</td>
<td>Inner dead band CLOSE</td>
</tr>
</tbody>
</table>

Diagnostic On time monitoring

Menu is only visible if on time monitoring (parameter **On time monitoring M0573**) is activated.

Required user level: **Observer (1)** or higher.

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic M0022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position transm. MWG</td>
<td>M1006</td>
<td></td>
</tr>
</tbody>
</table>

The following states can be checked via diagnostic:

- **Minimum stroke** (M1007)
- **Maximum stroke** (M1012)
- **Abs. end pos. OPEN** (M1011)
- **Abs. end pos. CLOSED** (M1008)
- **Absolute value** (M1009)

13.6 Diagnostic Position transmitter MWG

Menu is only visible if the actuator is equipped with magnetic limit and torque transmitter (MWG).

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum stroke</td>
<td>M1007</td>
<td>Minimum stroke of MWG</td>
</tr>
<tr>
<td>Maximum stroke</td>
<td>M1012</td>
<td>Maximum stroke of MWG</td>
</tr>
<tr>
<td>Abs. end pos. OPEN</td>
<td>M1011</td>
<td>Absolute value in end position OPEN</td>
</tr>
<tr>
<td>Abs. end pos. CLOSED</td>
<td>M1008</td>
<td>Absolute value in end position CLOSED</td>
</tr>
<tr>
<td>Absolute value</td>
<td>M1009</td>
<td>Absolute value of MWG</td>
</tr>
</tbody>
</table>

13.7 Diagnostic positioner

Menu M0613 is only visible if function **Positioner M0158** is activated.

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive behaviour</td>
<td>M0626</td>
<td>Setting the adaptive behaviour of the positioner</td>
</tr>
<tr>
<td>Setpoint position</td>
<td>M0622</td>
<td>Setpoint position</td>
</tr>
<tr>
<td>Actual position</td>
<td>M0623</td>
<td>Actual position</td>
</tr>
<tr>
<td>Outer dead b.: OPEN</td>
<td>M0625</td>
<td>Outer dead band OPEN</td>
</tr>
<tr>
<td>Outer dead b.: CLOSE</td>
<td>M1002</td>
<td>Outer dead band CLOSED</td>
</tr>
<tr>
<td>Inner dead b.: OPEN</td>
<td>M1003</td>
<td>Inner dead band OPEN</td>
</tr>
<tr>
<td>Inner dead b.: CLOSE</td>
<td>M1004</td>
<td>Inner dead band CLOSE</td>
</tr>
</tbody>
</table>

13.8 Diagnostic On time monitoring

Menu is only visible if on time monitoring (parameter **On time monitoring M0573**) is activated.

Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic M0022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On time monitoring</td>
<td>M0593</td>
<td></td>
</tr>
</tbody>
</table>

The following states can be checked via diagnostics:
13.9. Diagnostic Process controller

Required user level: Specialist (4) or higher.

M Diagnostic M0022 Process controller M0883

Menu M0883 is only visible if function Process controller M0741 is activated.

The following states can be checked via diagnostic:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current on time/h</td>
<td>M0594</td>
<td>On time/h</td>
</tr>
<tr>
<td>Current starts/h</td>
<td>M0595</td>
<td>Starts/h</td>
</tr>
<tr>
<td>Process setpoint of PID controller</td>
<td>M0884</td>
<td>Process setpoint</td>
</tr>
<tr>
<td>Actual process value of PID controller</td>
<td>M0885</td>
<td>Actual process value</td>
</tr>
<tr>
<td>Op. comm. PID controller</td>
<td>M0886</td>
<td>Calculated setpoint position for subordinate controller</td>
</tr>
</tbody>
</table>

13.10. Diagnostic FQM (fail safe)

The menu will only be visible if a fail safe unit (FQM) is connected to the actuator.

Required user level: Observer (1) or higher.

M Diagnostic M0022 FO cables M0638

The following states can be checked via diagnostic:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Menu ID</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>FQM ready</td>
<td>M1725</td>
<td>FQM (fail safe) is ready and no fail safe request is</td>
</tr>
<tr>
<td></td>
<td></td>
<td>available;</td>
</tr>
<tr>
<td>FQM trigger diag.</td>
<td>M1726</td>
<td>Trigger signal for FQM (fail safe) diagnostic;</td>
</tr>
<tr>
<td>FQM fail safe end.pos.</td>
<td>M1727</td>
<td>FQM (fail safe) is in end position corresponding to the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fail safe position (depending on the configuration, this</td>
</tr>
<tr>
<td></td>
<td></td>
<td>can be OPEN or CLOSED)</td>
</tr>
<tr>
<td>FQM spring wound</td>
<td>M1728</td>
<td>Constant force spring of FQM (fail safe) is wound;</td>
</tr>
<tr>
<td>FQM request</td>
<td>M1729</td>
<td>Fail safe function of FQM (fail safe) is requested; (ESD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>requested);</td>
</tr>
<tr>
<td>FQM fault initialisation</td>
<td>M1730</td>
<td>Initialisation (winding up of constant force spring) of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FQM (fail safe) has failed;</td>
</tr>
</tbody>
</table>

13.11. Simulation (inspection and test function)

The service personnel or the commissioning engineer can use this simulation function to simulate the operation and failure behaviour of the actuator or the AUMATIC to check the interface to the DCS and the correct behaviour of the DCS.

13.11.1. Actuator signals

By simulating the actuator signals, the signal behaviour of the AUMATIC to the DCS can be tested, for example, without having to connect the actuator.

Required user level: Service (5) or higher.

M Diagnostic M0022 Simulation M0023 Actuator signals M0024

Simulation values:

- **End position OPEN** End position OPEN reached.
- **End position CLOSED** End position CLOSED reached.
- **Torque fault OPEN** Torque in direction OPEN reached.
13.11.2. Interface signals

By simulating the interface signals, the signal behaviour of the AUMATIC to the DCS can be tested, for example, without having to connect the actuator.

Required access level: Specialist (4) or higher.

Signals for simulating digital outputs:
Only the assigned outputs are displayed.
Numbers 1, 2, 3, ... indicate the digital output.

Example: 1 Fault
Indication Fault is assigned to digital output 1 (parameter Signal DOUT 1 M0109).
Simulation is activated and deactivated by push button Ok.
Triangles indicate the activation:

▲	High active (voltage is present, e.g. + 24 V DC)
▼	Low active (voltage is present, e.g. + 24 V DC)
△	High active (voltage is not present)
▽	Low active (voltage is not present)

Signals for simulating analogue outputs:

| Signals AOUT 1 | Simulation of output signal Actual position, setting range: 0 ... 20 mA |
| Signals AOUT 2 | Simulation of output signal Torque, setting range: 0 ... 20 mA |
14. Plant Asset Management

The <Asset Management> function provides information (operational data, signals, reports and characteristics), which can be used within an Asset Management System but also generally for support during commissioning, maintenance or corrective action.

14.1. Operating data

Operating data provides details e.g. about the running time, the number of starts, number of torque faults etc.

The analysis of this data provides valuable information regarding the optimization of both actuator and valve. When using this information purposefully, actuator and valve will be carefully operated, e.g. through appropriate parameter setting. In case of faults, the logging of operating data allows for quick fault diagnostic.

View the operating data

Two counters are available, a lifetime counter and a resettable counter.

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor running time</td>
<td>Motor running time</td>
</tr>
<tr>
<td>Motor starts</td>
<td>Number of motor starts (starts)</td>
</tr>
<tr>
<td>Thermal fault</td>
<td>Number of thermal faults (motor protection)</td>
</tr>
<tr>
<td>Torque fault CLOSE</td>
<td>Number of torque faults in direction CLOSE</td>
</tr>
<tr>
<td>Torque fault OPEN</td>
<td>Number of torque faults in direction OPEN</td>
</tr>
<tr>
<td>Limit trip CLOSED</td>
<td>Number of limit switch trippings in direction CLOSE</td>
</tr>
<tr>
<td>Limit trip OPEN</td>
<td>Number of limit switch trippings in direction OPEN</td>
</tr>
<tr>
<td>Torque trip CLOSE</td>
<td>Number of torque switch trippings in direction CLOSE</td>
</tr>
<tr>
<td>Torque trip OPEN</td>
<td>Number of torque switch trippings in direction OPEN</td>
</tr>
<tr>
<td>On time warning 1</td>
<td>Total of all time intervals during which a start/run warn-</td>
</tr>
<tr>
<td></td>
<td>ing was signalled.</td>
</tr>
<tr>
<td>On time warning 2</td>
<td>Max. time interval during which a start/run warn-</td>
</tr>
<tr>
<td></td>
<td>ing was signalled.</td>
</tr>
<tr>
<td>System starts</td>
<td>Total of AUMATIC system starts</td>
</tr>
<tr>
<td>Max. tem. controls</td>
<td>Maximum temperature of the controls</td>
</tr>
<tr>
<td>Min. temp. controls</td>
<td>Minimum temperature of the controls</td>
</tr>
<tr>
<td>Max. temp. MWG</td>
<td>Maximum temperature of the MWG</td>
</tr>
<tr>
<td>Min. temp. MWG</td>
<td>Minimum temperature of the MWG</td>
</tr>
<tr>
<td>Max. vibration</td>
<td>Maximum vibration of actuator</td>
</tr>
<tr>
<td>Operating hours</td>
<td>Operating hours counter: Number of hours during which</td>
</tr>
<tr>
<td></td>
<td>controls are supplied with power</td>
</tr>
</tbody>
</table>

Reset operating data

Required user level: Specialist (4) or higher.

Asset Management M1231
Operational info M0177
Reset operation info M0197
The entries in the operating data logging can be reset (deleted) via this menu.

14.2. Event report

The event report records system events and status signals. The event record can be exported to the external SD card or read via AUMA CDT software. This allows conclusions on previous actuator and valve operations, for example.

Information

Since the events are recorded with a time-stamp, date and time (parameter **Date and time M0221**) should be properly set.

Event filter for system events

The AUMATIC records system events such as operation commands or modifications on the parameter settings. A filter is used to define the system events to be recorded in the event report.

Required user level: **AUMA (6)**.

Asset Management M1231

Event report M0195

System event filter M0334

An event is recorded (i.e. filter is active) if a black dot is placed behind the value displayed.

Events which can be recorded:

- **Commands**
 All operation commands recognised as valid and executed are recorded. The command source of the operation command is also recorded.

- **Parameterization**
 All modifications of parameter settings are also recorded. Both former and new value are recorded.

- **Enable processes**
 The enabling of a function is recorded.

- **System events**
 All important system events are recorded. These include: System start, change of date, downloads, modifications of the event filter, resetting of operating data and switching on the mains voltage.

Event filter for status indications

The AUMATIC records status indications such as faults, errors, warnings or Actuator is in end position CLOSED/OPEN. A filter is used to define the status indications to be recorded in the event report.

Required user level: **AUMA (6)**.

Asset Management M1231

Event report M0195

Event filter for Events M0333

An event is recorded (i.e. filter is active) if a black dot is placed behind the value displayed.

Events which can be recorded:

The events which can be selected here are described in the <Faults and warnings> chapter.

File size of event report

The file size of the event report can be modified to record more or less events as desired. If the file is full, the oldest events will be overwritten so that the latest and current events are recorded.

Required user level: **AUMA (6)**.

Asset Management M1231

Event report M0195

File size M0330
Default value: 548 [kByte]
Setting range: 1 ... 1,024 [kByte]
With the maximum setting range of 1,024 kbyte, at least 20,000 events can be stored.

Information
Some events are stored in a sector which cannot be overwritten. This includes, for example, modifications of the parameter setting, enabling of functions and certain special functions.

Number of events in the buffer

The events are first stored into an internal RAM. From this buffer, they are written to the event report after the set report cycle. The number of events in the buffer can be set here.

Information
In case of power failure, the events in the buffer will be lost.

Required user level: AUMA (6).

| M ▶ Asset Management M1231
| Event report M0195
| Buffer size M0332

Default value: 50 [events]
Setting range: 10 ... 100 [events]

Save interval

The event report is updated and saved at a defined cycle. This cycle (save interval) can be reduced or extended.

Required user level: AUMA (6).

| M ▶ Asset Management M1231
| Event report M0195
| Save interval M0331

Default value: 50,000
Setting range: 1,000 ... 65,535 [ms]

14.3. Characteristics

14.3.1. Torque-travel characteristic

Conditions

- Actuators with electronic control unit
- Actuator controls AC 01.2 (non-intrusive version) from firmware version 02.03.01

Characteristics

Representation of torque requirement across complete travel (resolution of 0.1 %)
During each travel, the controls continuously record the torques applied.

Application

When comparing two characteristics (current characteristic with archived characteristic), the wear within the valve or the actuator can be assessed.

Display torque-travel characteristics

| M ▶ Asset Management M1231
| Characteristics M0313
| Torque-travel M1229
| Characteristics M0546

3 characteristics with two diagrams each (direction OPEN and direction CLOSE) are displayed while the arrow indicates the operation direction diagram.

Each characteristic has a designation (e.g. REF 1), which can be changed.

Use push buttons ▲▼ Up ▲ Down ▼ to change between characteristics.
Figure 58: Example of torque-time characteristic

- - - Set tripping torque
- - - Min. adjustable tripping torque
Diagram for direction CLOSE
Diagram for direction OPEN

The displayed characteristics are records which were previously saved.

The following further information is saved with the characteristic (can be requested via push button Details)

- Saving date: Time of last torque measurement
- Starting date: Time of first torque measurement
- Scaling: Y-axis (torque)
- Tripping torque: Set torque in direction OPEN/CLOSE
- Min tripping torque: Min. adjustable tripping torque
- Max. value: Max. measured torque value
- Mean value: Calculated mean value

Characteristics recording procedure

1. Reset characteristics (clear buffer)
2. Change characteristic designation
3. Record characteristic: Perform operation (e.g. CLOSE-OPEN-CLOSE)
4. Save characteristic

Reset characteristic

This parameter is used to reset the data in the buffer (RAM).

Required user level: Specialist (4) or higher.

Change characteristic designation

Each of the three characteristics can be named with an additional 20 characters.

Required user level: Specialist (4) or higher.

Record characteristic: Perform operation (e.g. CLOSE-OPEN-CLOSE)

Set selector switch to position Local control (LOCAL) or Remote control (REMOTE) to record the characteristic.
Save characteristics

3 characteristics can be saved.
Each characteristic consists of two charts (direction OPEN and direction CLOSE).
When saving, data is transferred from the buffer (RAM) to the read-only memory (ROM).

Required user level: Specialist (4) or higher.

14.3.2. Position-time characteristic

Conditions

- Actuator of the type range SA 07.2 – SA 16.2/SAR 07.2 – SAR 16.2
- MWG position transmitter in actuator

Characteristics

During recording, the current position, for modulating actuators also the setpoint position, within an adjustable time interval (between 1 second and 1 hour).

Application

By assessing the position-time characteristics, the control behaviour can be assessed or insights on the use of the actuator can be gained.

Display position-time characteristics

Each characteristic has a designation:

\[
\text{ACTUAL-POSITION} = \text{actual position} \\
\text{NOMINAL-POSITION} = \text{setpoint position (modulating actuators only)}
\]

Use push buttons ▲▼Up▼Down▼ to change between characteristics.

Figure 59: Example of position-time characteristic

--- 50 % (position between OPEN = 100 % and CLOSED = 0 %)

The following further information is saved with the characteristic (can be requested via push button Details)

- Saving date: Time of last position measurement
- Starting date: Time of first position measurement
- Scaling: Y-axis (position)

Set resolution (time interval)

Actuator controls records 10,000 measured values Set resolution of e.g. approx. 1 second (parameter \(\text{Interval position-time} = 1 \text{ [s]} \)) results in a recording time of 2.7 hours (10 000 seconds). Once this value has been exceeded, the former positions will be overwritten (ring buffer)

Required user level: Specialist (4) or higher.
14.3.3. Temperature-time characteristic

Characteristics

Up to four temperature-time characteristics can be recorded unless the devices are fitted with suitable sensors.

Conditions

- For recording the temperature within the control unit: MWG (magnetic limit and torque transmitter)
- For recording the temperature within the motor: additionally temperature sensor (PT 100) in the motor
- For recording the temperature within the gear housing: additionally temperature sensor (PT 100) in the gearing

Application

Evaluation of the temperature-time characteristics allows to gain knowledge about the service conditions (ambient temperatures) of the actuator.

Display temperature-time characteristic

M Asset Management M1231
Characteristics M0313
Temperature-time M0714

Up to four characteristics are shown in the display.

CONTROLS TEMPERATURE = temperature within the control unit
MWG TEMPERATURE = MWG temperature
MOTOR TEMPERATURE = temperature within the motor
GEAR TEMPERATURE = within the gear housing

Use push buttons ▲ ▼ Up ▲ Down ▼ to change between available characteristics.

Figure 60: Example of temperature-time (within the control unit)

- - - 0° line
\| Recording interrupted e.g. due to power failure

AC display shows temperature evolution during one week. AUMA CDT software reads out the evolution during an entire year.

The following further information is saved with the characteristic (can be requested via push button Details):

- Saving date: Time of last temperature measurement
- Starting date: Time of first temperature measurement
- Scaling: Y-axis (temperature)
- Min. value: Minimum measured value
- Max. value: Maximum measured value

14.4. Histograms

14.4.1. Motor running time-position (histogram)

Conditions

- Actuators of the type range SA 07.2 – SA 16.2/SAR 07.2 – SAR 16.2
Characteristics

The entire travel (from 0 – 100 %) is divided into 20 segments for recording the motor running time. When passing a segment, the counter, shown as bar graph, increments. The histogram is cyclically saved once a minute, in case a change has occurred.

Application

The motor running time position histogram shows the travel range within which the actuator is predominantly operated. This allows to draw conclusions for the sizing of the valve.

Display motor running time-position

<table>
<thead>
<tr>
<th>M ></th>
<th>Asset Management M1231</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Histograms M0712</td>
</tr>
<tr>
<td></td>
<td>Motor run.time-position M0713</td>
</tr>
</tbody>
</table>

Figure 61: Example of a motor running time position histogram

The following detailed information is saved with the histogram (may be called up via push buttons Details)

- **Starting date:** Date of first running time measurement
- **Saving date:** Date of last running time measurement
- **Scaling:** Y-axis (motor running time)

14.4.2. Motor running time-temperature (histogram)

Conditions

- MWG position transmitter in actuator
- Temperature sensor in the motor (option)

Characteristics

The motor temperature is divided into the following segments: \(< -20 ^\circ C \to -10 ^\circ C, > -10 ^\circ C \to 0 ^\circ C, > 0 ^\circ C \to 10 ^\circ C, ..., 120 ^\circ C \to 130 ^\circ C, > 130 ^\circ C \to 140 ^\circ C, > 140 ^\circ C.\)

During each operation, the counter of the segment corresponding to the current motor temperature will be incremented. The result is shown in a bar chart. The histogram is cyclically saved once a minute, in case a change has occurred.

Application

The histogram indicates the ambient conditions (temperatures) at which the actuator motor was predominantly operated.

Display motor running time-temperature

<table>
<thead>
<tr>
<th>M ></th>
<th>Asset Management M1231</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Histograms M0712</td>
</tr>
<tr>
<td></td>
<td>Motor run.time-temp. M0715</td>
</tr>
</tbody>
</table>

Figure 62: Example of motor running time - motor temperature histogram

The following further information is saved with the histogram (can be requested via push button Details)

- **Starting date:** Date of first running time measurement
- **Saving date:** Date of last running time measurement
- **Scaling:** Y-axis (motor running time)
14.4.3. Acceleration-frequency (histogram)

Conditions
- MWG position transmitter in actuator

Characteristics
The histogram show the percentage distribution of exceeded acceleration. Exceeding of the acceleration limits preset in the factory is recorded in ten different frequency ranges with 20 Hz each (0 – 20 Hz, ..., 180 – 200 Hz).

Application
The histogram indicates the frequency range within which the actuator was exposed to vibration for example (e.g. vibration with the pipeline). Impermissibly high or persisting vibration can destroy components of the actuator.

Display acceleration-frequency

M ▷ Asset Management M1231
 - Histograms M0712
 - Acceleration-frequency M0716

Figure 63: Example of acceleration-frequency histogram

The following further information is saved with the histogram (can be requested via push button Details):
- **Starting date**: Date of first measurement
- **Saving date**: Date of last measurement
- **Scaling**: Y-axis (acceleration)

14.4.4. Motor running time-torque (histogram)

Conditions
- MWG position transmitter in actuator

Characteristics
The torque scale is divided into the following segments for both directions (OPEN/CLOSE):
- from 0 – 30 %
- from 30 – 110 % (8 segments with a width of 10 % each)
- more than 110 %

During each operation, the counter of the segment corresponding to the currently required torque will be incremented. The result is shown in a bar chart. The histogram is cyclically saved once a minute, in case a change has occurred.

Application
The motor running time-torque histogram indicates the actuator load during service life.

Display motor running time-torque

M ▷ Asset Management M1231
 - Histograms M0712
 - Motor run.time-torque M0830

Figure 64: Example of motor running time-torque histogram

The following further information is saved with the histogram (can be requested via push button Details)
14.5. Maintenance (information and signals)

Characteristics

AC actuator controls monitor various parameters set in the factory which have an impact on the wear of the actuator. Once one of these parameters exceeds a determined limit, actuator controls generate a signal:

- Status indication: **S0005 Warnings** (AUMA category)
 - Details: Maintenance required
- Status indication: **S0010 Maintenance required** (NAMUR category)
 - Details: shows the parameter(s) for which the limit was exceeded, causing the Maintenance required signal.

Apart from the parameter monitoring preset in the factory (MT lifetime mechanics/O-rings/lubricant/contactors), a fixed maintenance interval can additionally be configured, triggering the same signal when exceeding the configured time.

The current maintenance status of the monitored parameters is represented in a bar chart.

Once maintenance is complete, the parameter initiating maintenance must be reset to zero.

Application

Maintenance on demand, i.e. the function can be used to perform maintenance depending on the intensity and load of the actuator.

Activate maintenance signals

Required user level: Specialist (4) or higher.

Device configuration M0053
 - **Application functions** M0178
 - **Activation** M0212
 - **Maintenance signals** M1136

Default value: Function not active

Setting values:

- Function not active <Maintenance signals> function deactivated.
- Function active <Maintenance signals> function activated.

Activate <Maintenance interval> function

Required user level: Specialist (4) or higher.

Device configuration M0053
 - **Application functions** M0178
 - **Activation** M0212
 - **Maintenance interval** M1137

Default value: Function not active

Setting values:

- Function not active <Maintenance interval> function deactivated.
- Function active <Maintenance interval> function activated.

Display maintenance information

Maintenance signals M1231
Maintenance M1644
Maintenance informat. M1037
The bar charts indicates the current consumption of the following lifetime accounts:

- Lifetime mechanics
- Lifetime seals (O-rings)
- Lifetime lubricants
- Lifetime contactors
- Maintenance interval (adjustable)

Once a bar reaches the threshold (- - -), maintenance will be required.

Reset parameter

Once maintenance is complete, the parameter initiating the maintenance must be reset.

Starting from Maintenance informat. M1037 indication, you can change via Edit to the reset mode.

Required user level: Specialist (4) or higher.

Set maintenance interval

Parameters for setting a defined maintenance interval. Once the set time has elapsed, a maintenance signal is issued.

Required user level: Specialist (4) or higher.

View/set mechanics setting values

The lifetime of the mechanics depends on the number of starts of the actuator. If an MWG is installed in the actuator, the number of completed turns including torque present will also be accounted for.
Required user level: Service (5) or higher.

14.6. Operating times: display

Characteristics
The actuator controls automatically determine the operating time for an operation between two end positions. For both directions (from OPEN to CLOSE and from CLOSE to OPEN), the last determined value is saved within a parameter.

Application
Operating time measurement indicates how an actuator installed in plant or a combination of actuator/gearbox/valve behaves with regard to inertia without performing an operation and measuring the time manually.

Display measured operating times

<table>
<thead>
<tr>
<th>M</th>
<th>Asset Management M1231</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Operating time M1232</td>
</tr>
<tr>
<td>M</td>
<td>Operating time CLOSE M1234</td>
</tr>
<tr>
<td>M</td>
<td>Operating time OPEN M1235</td>
</tr>
</tbody>
</table>

Indications:
- **Operating time CLOSE** indicates the measured operating time for the last operation in direction CLOSE.
- **Operating time OPEN** indicates the measured operating time for the last operation in direction OPEN.

14.7. Device temperatures: display

Required user level: Specialist (4) or higher.

<table>
<thead>
<tr>
<th>M</th>
<th>Asset Management M1231</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Device status M0592</td>
</tr>
<tr>
<td>M</td>
<td>Device temperatures M0524</td>
</tr>
</tbody>
</table>

Indications:
- **Temp. controls** indicates the current temperature in controls housing.
- **Temp. control unit** indicates the current temperature in control unit of the actuator (actuator housing).
15. Corrective action

15.1. Primary fuses

The AUMATIC has to be opened to replace the primary fuses. For detailed information, refer to operation instructions for actuator.

15.2. Fault indications and warning indications

Faults interrupt or prevent the electrical actuator operation. In the event of a fault, the display backlight is red.

Warnings have no influence on the electrical actuator operation. They only serve for information purposes.

Collective signals include further indications which can be displayed via the Details push button.

Table 15: Faults and warnings via status indications in the display

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0001</td>
<td>Instead of the valve position, a status text is displayed.</td>
<td>For a description of the status texts, refer to <Status texts in Menu S0001>.</td>
</tr>
<tr>
<td>S0005 Warnings</td>
<td>Collective signal 02: Indicates the number of active warnings.</td>
<td>For indicated value > 0: Press push button Details.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For details, refer to <Warnings and Out of specification> table.</td>
</tr>
<tr>
<td>S0006 Not ready REMOTE</td>
<td>Collective signal 04: Indicates the number of active signals.</td>
<td>For indicated value > 0: Press push button Details.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For details, refer to <Not ready REMOTE and Function check> table.</td>
</tr>
<tr>
<td>S0007 Fault</td>
<td>Collective signal 03: Indicates the number of active faults. The actuator cannot be operated.</td>
<td>For indicated value > 0: Press push button Details to display a list of detailed indications.</td>
</tr>
<tr>
<td>S0008 Out of specification</td>
<td>Collective signal 07: Indication according to NAMUR recommendation NE 107 Actuator is operated outside the normal operation conditions.</td>
<td>For indicated value > 0: Press push button Details.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For details, refer to <Faults and Failure> table.</td>
</tr>
<tr>
<td>S0009 Function check</td>
<td>Collective signal 08: Indication according to NAMUR recommendation NE 107 The actuator is being worked on; output signals are temporarily invalid.</td>
<td>For indicated value > 0: Press push button Details.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For details, refer to <Not ready REMOTE and Function check> table.</td>
</tr>
<tr>
<td>S0010 Maintenance required</td>
<td>Collective signal 09: Indication according to NAMUR recommendation NE 107 Recommendation to perform maintenance.</td>
<td>For indicated value > 0: Press push button Details to display a list of detailed indications.</td>
</tr>
<tr>
<td>S0011 Failure</td>
<td>Collective signal 10: Indication according to NAMUR recommendation NE 107 Actuator function failure, output signals are invalid</td>
<td>For indicated value > 0: Press push button Details to display a list of detailed indications. For details, refer to <Faults and Failure> table.</td>
</tr>
</tbody>
</table>
Table 16: Warnings and Out of specification

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config. warning</td>
<td>Collective signal 06: Possible cause: Configuration setting is incorrect. The device can still be operated with restrictions.</td>
<td>Press push button ➔ Details to display a list of individual indications. For a description of the individual signals refer to <Individual signals> table/ Config. warning (collective signal 06).</td>
</tr>
<tr>
<td>Internal warning</td>
<td>Collective signal 15: Device warnings The device can still be operated with restrictions.</td>
<td>Press push button ➔ Details to display a list of individual indications. For a description of the individual signals refer to <Individual signals> table/ Internal warning (collective signal 15).</td>
</tr>
<tr>
<td>24 V DC external</td>
<td>The external 24 V DC voltage supply of the controls has exceeded the power supply limits.</td>
<td>Check 24 V DC voltage supply.</td>
</tr>
<tr>
<td>Wrn on time running</td>
<td>Warning on time max. running time/h exceeded</td>
<td>• Check modulating behaviour of actuator. • Check parameter Perm. running time/h M0356, re-set if required.</td>
</tr>
<tr>
<td>Wrn on time starts</td>
<td>Warning on time max. number of motor starts (starts) exceeded</td>
<td>• Check modulating behaviour of actuator. • Check parameter Permissible starts/h M0357, re-set if required.</td>
</tr>
<tr>
<td>Failure behav. active</td>
<td>The failure behaviour is active since all required setpoints and actual values are incorrect.</td>
<td>Verify signals: • Setpoint E1 • Actual value E2 • Actual process value E4</td>
</tr>
<tr>
<td>Wrn input AIN 1</td>
<td>Warning: Loss of signal analogue input 1</td>
<td>Check wiring.</td>
</tr>
<tr>
<td>Wrn input AIN 2</td>
<td>Warning: Loss of signal analogue input 2</td>
<td>Check wiring.</td>
</tr>
<tr>
<td>Wrn setpoint position</td>
<td>Warning: Loss of signal of actuator setpoint position Possible causes: Input signal for setpoint = 0 (signal loss)</td>
<td>Check setpoint signal.</td>
</tr>
<tr>
<td>Op. time warning</td>
<td>The set time (parameter Perm. op. time, manual M0570) has been exceeded. The preset operating time is exceeded for a complete travel from end position OPEN to end position CLOSED.</td>
<td>The warning indications are automatically cleared once a new operation command is executed. • Check valve. • Check parameter Perm. op. time, manual M0570.</td>
</tr>
<tr>
<td>Wrn controls temp.</td>
<td>Temperature within controls housing too high</td>
<td>Measure/reduce ambient temperature.</td>
</tr>
<tr>
<td>Wrn motor temp.</td>
<td>Temperature within motor winding too high</td>
<td>Check actuator sizing, correct accordingly.</td>
</tr>
<tr>
<td>Wrn gearbox temp.</td>
<td>Temperature within actuator gear housing too high</td>
<td>Check actuator sizing, correct accordingly.</td>
</tr>
<tr>
<td>RTC not set</td>
<td>Real time clock has not yet been set.</td>
<td>Set time.</td>
</tr>
<tr>
<td>RTC button cell</td>
<td>Voltage of the RTC button cell is too low.</td>
<td>Replace button cell.</td>
</tr>
<tr>
<td>PVST fault</td>
<td>Partial Valve Stroke Test (PVST) could not be successfully completed.</td>
<td>Check actuator (PVST settings).</td>
</tr>
<tr>
<td>PVST abort</td>
<td>Partial Valve Stroke Test (PVST) was aborted or could not be started.</td>
<td>Perform RESET or restart PVST.</td>
</tr>
<tr>
<td>Wrm no reaction</td>
<td>No actuator reaction to operation commands within the set reaction time.</td>
<td>• Check movement at actuator. • Check parameter Reaction time M0634.</td>
</tr>
<tr>
<td>Wrm FOC</td>
<td>Optical receiving signal (channel 1) incorrect (no or insufficient Rx receive level) or RS-485 format error (incorrect bit(s))</td>
<td>Check/repair FO cables.</td>
</tr>
<tr>
<td>Wrn FO cable budget</td>
<td>Warning: FO cable system reserve reached (critical or permissible Rx receive level)</td>
<td>Check/repair FO cables.</td>
</tr>
<tr>
<td>Indication on display</td>
<td>Description/cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Wrn FOC connection</td>
<td>Warning FO cable connection is not available.</td>
<td>Fit FO cable connection.</td>
</tr>
<tr>
<td>Torque wrn OPEN</td>
<td>Limit value for torque warning in direction OPEN exceeded.</td>
<td>Check parameter Wrn torque OPEN M0768, re-set if required.</td>
</tr>
<tr>
<td>Torque wrn CLOSE</td>
<td>Limit value for torque warning in direction CLOSE exceeded.</td>
<td>Check parameter Wrn torque CLOSE M0769, re-set if required.</td>
</tr>
</tbody>
</table>

Table 17: Faults and Failure

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration error</td>
<td>Collective signal 11: Configuration error has occurred.</td>
<td>Press push button ‹Details› to display a list of individual indications. For a description of the individual signals refer to <Individual signals> table/ Configuration error (collective signal 11).</td>
</tr>
<tr>
<td>Config. error REMOTE</td>
<td>Collective signal 22: Configuration error has occurred.</td>
<td>Press push button ‹Details› to display a list of individual indications. For a description of the individual signals refer to <Individual signals> table/ Config. error REMOTE (collective signal 22).</td>
</tr>
<tr>
<td>Internal error</td>
<td>Collective signal 14: Internal error has occurred.</td>
<td>AUMA service Press push button ‹Details› to display a list of individual indications. For a description of the individual signals refer to <Individual signals> table/ Internal error (collective signal 14).</td>
</tr>
<tr>
<td>Torque fault CLOSE</td>
<td>Torque fault in direction CLOSE</td>
<td>Perform one of the following measures:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Issue operation command in direction OPEN.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Set selector switch to position Local control (LOCAL) and reset fault indication via push button RESET.</td>
</tr>
<tr>
<td>Torque fault OPEN</td>
<td>Torque fault in direction OPEN</td>
<td>Perform one of the following measures:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Issue operation command in direction CLOSE.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Set selector switch to position Local control (LOCAL) and reset fault indication via push button RESET.</td>
</tr>
<tr>
<td>Phase fault</td>
<td>• When connecting to a 3-ph AC system and with internal 24 V DC supply of the electronics: Phase 2 is missing.</td>
<td>Test/connect phases.</td>
</tr>
<tr>
<td></td>
<td>• When connecting to a 3-ph or 1-ph AC system and with external 24 V DC supply of the electronics: One of the phases L1, L2 or L3 is missing.</td>
<td></td>
</tr>
<tr>
<td>Incorrect phase seq</td>
<td>The phase conductors L1, L2 and L3 are connected in the wrong sequence. Only applicable if connected to a 3-ph AC system.</td>
<td>Correct the sequence of the phase conductors L1, L2 and L3 by exchanging two phases.</td>
</tr>
</tbody>
</table>
Table 18: Not ready REMOTE and Function check (collective signal 04)

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong oper. cmd</td>
<td>Collective signal 13: Possible causes:</td>
<td>• Check operation commands (reset/clear all operation commands and send one operation command only).</td>
</tr>
<tr>
<td></td>
<td>• Several operation commands (e.g. OPEN and CLOSE simultaneously, or OPEN and SETPOINT operation simultaneously)</td>
<td>• Set parameter Positioner to Function active.</td>
</tr>
<tr>
<td></td>
<td>• A setpoint is present and the positioner is not active</td>
<td>• Check setpoint.</td>
</tr>
<tr>
<td></td>
<td>• For fieldbus: Setpoint exceeds 100.0 %</td>
<td>• Press push button ➔ Details to display a list of individual indications. For details, refer to <Individual indications> table.</td>
</tr>
<tr>
<td>Sel. sw. not REMOTE</td>
<td>Selector switch is not in position REMOTE.</td>
<td>Set selector switch to position REMOTE.</td>
</tr>
<tr>
<td>Service active</td>
<td>Operation via service interface (Bluetooth) and service software AUMA CDT.</td>
<td>Exit service software.</td>
</tr>
<tr>
<td>Disabled</td>
<td>Actuator is in operation mode Disabled.</td>
<td>Check setting and status of function <Local controls enable>.</td>
</tr>
<tr>
<td>EMCY stop active</td>
<td>The EMERGENCY stop switch has been operated. The motor control power supply (contactors or thyristors) is disconnected.</td>
<td>• Enable EMERGENCY stop switch.</td>
</tr>
<tr>
<td></td>
<td>• Reset EMERGENCY stop state by means of Reset command.</td>
<td>• Verify failure source.</td>
</tr>
<tr>
<td>EMCY behav. active</td>
<td>Operation mode EMERGENCY is active (EMERGENCY signal was sent). 0 V are applied at the EMERGENCY input.</td>
<td>• Apply +24 V DC at EMERGENCY input.</td>
</tr>
<tr>
<td>I/O interface</td>
<td>The actuator is controlled via the I/O interface (parallel).</td>
<td>Check I/O interface.</td>
</tr>
<tr>
<td>Handwheel active</td>
<td>Manual operation is activated.</td>
<td>Start motor operation.</td>
</tr>
<tr>
<td>Interlock</td>
<td>An interlock is active.</td>
<td>Check interlock signal.</td>
</tr>
<tr>
<td>Interlock by-pass</td>
<td>By-pass function is interlocked.</td>
<td>Check states of main and by-pass valve.</td>
</tr>
<tr>
<td>PVST active</td>
<td>Partial Valve Stroke Test (PVST) is active.</td>
<td>Wait until PVST function is complete.</td>
</tr>
</tbody>
</table>

Table 19: Individual indications

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config. warning</td>
<td>Collective signal 06</td>
<td>Configure analogue inputs AIN 1 or AIN 2, refer to <Input for setpoint position></td>
</tr>
<tr>
<td>Wrn Setpoint Source</td>
<td>No setpoint source configured although an operation to a setpoint position is to be performed;</td>
<td>Configure analogue inputs AIN 1 or AIN 2, refer to <Input for setpoint position></td>
</tr>
<tr>
<td>Wrn Dead bands</td>
<td>The inner dead band is larger than the outer deadband (the outer dead band is adapted to the inner dead band);</td>
<td>Check positioner setting.</td>
</tr>
<tr>
<td>Torque config. CLOSE</td>
<td>The set tripping torque for direction CLOSE is outside the permissible setting range.</td>
<td>Verify torque switching setting.</td>
</tr>
<tr>
<td>Indication on display</td>
<td>Description/cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Torque config. OPEN</td>
<td>The set tripping torque for direction OPEN is outside the permissible setting range.</td>
<td>Verify torque switching setting.</td>
</tr>
<tr>
<td>DIN 1 configuration – DIN 10 configuration</td>
<td>Signal assignment for the indicated digital input (DIN 1 – DIN 10) is incorrect.</td>
<td>Reconfigure digital input.</td>
</tr>
<tr>
<td>Configuration EMCY</td>
<td>Configuration of EMERGENCY behaviour is incorrect</td>
<td>Check configuration.</td>
</tr>
<tr>
<td>Config. oper. profile</td>
<td>Configuration of operation profile is incorrect</td>
<td>Check configuration.</td>
</tr>
<tr>
<td>FO configuration</td>
<td>FO configuration is incorrect</td>
<td>Check configuration.</td>
</tr>
<tr>
<td>Heat.monitor.config.</td>
<td>Configuration of the heater monitoring is incorrect</td>
<td>Check configuration.</td>
</tr>
<tr>
<td>Fail.beh. config.</td>
<td>Configuration of the failure behaviour is incorrect</td>
<td>Check configuration.</td>
</tr>
<tr>
<td>Config. PID controller</td>
<td>Configuration of PID controller is incorrect</td>
<td>Check configuration.</td>
</tr>
<tr>
<td>Configuration error (Collective signal 11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE MCM</td>
<td>Available version of the of 'MCM' (Motor Control and Monitoring / A52) electronics sub-assembly does not correspond to the target configuration.</td>
<td>Check hardware equipment/article number MCM.</td>
</tr>
<tr>
<td>IE PSO</td>
<td>Available version of the 'PSO' (Power Supply Options / A52.1) electronics sub-assembly does not correspond to the target configuration</td>
<td>Check hardware equipment/article number PSO.</td>
</tr>
<tr>
<td>IE config. pos. transm.</td>
<td>Internal error of position transmitter configuration (for actual position recording)</td>
<td>Check hardware equipment/article number position transmitter.</td>
</tr>
<tr>
<td>IE parameter config.</td>
<td>Available configuration does not correspond to the target configuration</td>
<td>Check position transmitter parameters.</td>
</tr>
<tr>
<td>Hydraulics fault (Collective signal 12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil level</td>
<td>Oil level too low</td>
<td>Check oil level.</td>
</tr>
<tr>
<td>Oil leakage</td>
<td>Oil leakage occurred</td>
<td>Check hydraulic system.</td>
</tr>
<tr>
<td>Motor running time</td>
<td>Permissible running time of the electric motor for hydraulic pump exceeded</td>
<td>Check hydraulic system.</td>
</tr>
<tr>
<td>Pressure rise fault</td>
<td>Pressure rise fault</td>
<td>Check hydraulic system.</td>
</tr>
<tr>
<td>Phase fault</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• When connecting to a 3-ph AC system and with internal 24 V DC supply of the electronics: Phase 2 is missing.</td>
<td>Test/connect phases.</td>
</tr>
<tr>
<td></td>
<td>• When connecting to a 3-ph or 1-ph AC system and with external 24 V DC supply of the electronics: One of the phases L1, L2 or L3 is missing.</td>
<td></td>
</tr>
<tr>
<td>Incorrect phase seq</td>
<td>The phase conductors L1, L2 and L3 are connected in the wrong sequence. Only applicable if connected to a 3-ph AC system.</td>
<td>Correct the sequence of the phase conductors L1, L2 and L3 by exchanging two phases.</td>
</tr>
<tr>
<td>Thermal fault</td>
<td>Motor protection tripped</td>
<td>• Cool down, wait.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• If the fault indication display persists after cooling down:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Set selector switch to position Local control (LOCAL) and reset fault indication via push button RESET.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Check fuses.</td>
</tr>
<tr>
<td>Wrong oper. cmd (Collective signal 13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Command REMOTE I</td>
<td>An incorrect operation command is available at I/O interface REMOTE I.</td>
<td>Correct operation command, i.e. delete and set anew.</td>
</tr>
<tr>
<td>Command REMOTE II</td>
<td>An incorrect operation command is available at I/O interface REMOTE II.</td>
<td>Correct operation command, i.e. delete and set anew.</td>
</tr>
<tr>
<td>Indication on display</td>
<td>Description/cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Command fieldbus</td>
<td>An incorrect operation command is available at the fieldbus interface.</td>
<td>Correct operation command.</td>
</tr>
<tr>
<td>Setpoint pos. disabled</td>
<td>Operation commands to setpoint positions are not available (function disabled)</td>
<td>Verify availability of function (Activation M0242 parameter)</td>
</tr>
<tr>
<td>Internal error (Collective signal 14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IE mot. prot. monitor</td>
<td>Motor protection monitoring is defective</td>
<td>Check motor protection monitoring.</td>
</tr>
<tr>
<td>IE selector switch</td>
<td>Internal error selector switch defective</td>
<td>Replace selector switch.</td>
</tr>
<tr>
<td>IE phase monitoring</td>
<td>Internal error of phase monitoring</td>
<td>Check power supply.</td>
</tr>
</tbody>
</table>
| IE 24 V AC | Internal error: The internal 24 V AC voltage supply of the controls has exceeded the power supply limits. The 24 V AC voltage supply is used to control the reversing contactors, to assess the thermostwatches, to supply the internal actuator heater and, as an option, to generate the 115 V AC supply for the customer. | • Check power supply (level and wiring).
• Check power supply unit. |
| IE output defective | Internal error output defective (switchgear control) | Check switchgear control. |
| IE position transmitter | Internal error position transmitter (for actual position recording) | Check actuator. |
| IE logic | Internal error of 'Logic' electronics sub-assembly (A2) | Check logic. |
| IE fieldbus | Internal error of 'Fieldbus' electronics sub-assembly (A1.8) | Check fieldbus interface. |
| IE MWG | Internal error of 'MWG' (Magnetic Limit and Torque Transmitter / B6) electronics sub-assembly | Check MWG. |
| IE LC | Internal error of 'LC' (Local Controls / A9) electronics sub-assembly | Check local controls. |
| IE Hall 1 calibration – | Internal error: Calibration of Hall sensor 1 – 5 of the MWG is incorrect. | Check MWG. |
| IE Hall 5 calibration | | |
| IE MWG calibration | Calibration of MWG is incorrect | Check MWG. |
| IE version | Internal error; conflict of versions | Check device configuration. |
| IE EEPROM | Internal error EEPROM | Check device configuration. |
| IE parameter | Internal error parameter (error during parameter initialisation) | Check device configuration. |
| IE file access | Internal error file access | Check device configuration. |
| IE backup | Error when accessing replacement parameters | Check device configuration. |
| IE registration | Internal error upon process data registration | Check device configuration. |
| IE startup FB | Internal error upon function block startup | Check device configuration. |
| IE startup sub-assy | Internal error upon electronics sub-assembly startup | Check device configuration. |
| IE LC exception | Error in the execution of LC firmware | Check device configuration. |
| IE logic exception | Error in the execution of logic firmware | Check device configuration. |
| IE MWG Exception | Error in the execution of MWG firmware | Check device configuration. |
| IE bus exception | Error in the execution of fieldbus interface firmware | Check device configuration. |
| IE MWG end positions | Error when recording the end positions using the MWG | Check device configuration. |
| Internal warning (Collective signal 15) | | |
| Wrm heater | Internal warning is active (control unit) | Check heater. |
| 24 V DC customer | The 24 V DC customer auxiliary supply to control the digital inputs has failed. | Check 24 V DC inputs (DIN). |
Indication on display

<table>
<thead>
<tr>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V DC internal</td>
<td>The internal 24 V DC power supply of the controls used to provide the electronics components (sub-assemblies within the AC 01.2 controls and in the actuator) has exceeded the power supply limits.</td>
</tr>
<tr>
<td>Wrn Backup in use</td>
<td>Internal warning: Replacement parameters are used as no valid parameters are available (Remedy: Reboot controls/actuator)</td>
</tr>
<tr>
<td>Wrn ref.actual position</td>
<td>Actuator position feedback has not yet been referenced to the end positions.</td>
</tr>
<tr>
<td>Wrn range act.pos.</td>
<td>The current signal range of the position feedback is outside the permissible range.</td>
</tr>
<tr>
<td>Wrn sign.loss act.pos.</td>
<td>Loss of signal of the actuator position feedback signal</td>
</tr>
<tr>
<td>Wrn event mark</td>
<td>Wrn event mark (internal system warning)</td>
</tr>
<tr>
<td>Wrn Tm mark</td>
<td>Wrn Tm mark (internal system warning)</td>
</tr>
<tr>
<td>Hydraulics warning (Collective signal 17)**</td>
<td></td>
</tr>
<tr>
<td>Operat. pressure min</td>
<td>Pressure of hydraulic accumulator lower than the minimum value of the set accumulator pressure.</td>
</tr>
<tr>
<td>Pump starts</td>
<td>Permissible number of starts of the hydraulic pump has been exceeded.</td>
</tr>
<tr>
<td>Oper. press. config.</td>
<td>Configuration of the accumulator pressure is incorrect.</td>
</tr>
<tr>
<td>Config. error REMOTE (Collective signal 22)**</td>
<td></td>
</tr>
</tbody>
</table>
| **IE I/O interface** | Available version of ‘I/O interface’ (A1.0) electronics sub-assembly does not correspond to the target configuration. | · Check parameter I/O interface M0139. The setting must correspond to the wiring diagram.
· Check wiring.
· Check I/O interface. |
| **IE remote interface** | Configuration for function of Remote interface is incorrect. | Check configuration. |
| **IE remote Prm Config** | Configuration of Remote interface function is faulty. | Check configuration. |
Table 20: Status texts in menu S0001

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor failure</td>
<td>Hardware is either defective or not available:</td>
<td>Check or replace hardware.</td>
</tr>
<tr>
<td></td>
<td>● for potentiometer, RWG, EWG = signal loss</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● for MWG = calibration active or Hall sensor defective</td>
<td></td>
</tr>
<tr>
<td>Not referenced</td>
<td>For potentiometer, RWG, EWG: end positions not set</td>
<td>Set end positions and perform reference operation.</td>
</tr>
<tr>
<td>Calibration</td>
<td>Calibration active</td>
<td></td>
</tr>
<tr>
<td>Out of range</td>
<td>Outside the value range</td>
<td>Set valid stroke.</td>
</tr>
<tr>
<td></td>
<td>● for potentiometer = insufficient stroke between the set end positions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● for RWG, EWG = end position OPEN = end position CLOSED</td>
<td></td>
</tr>
<tr>
<td></td>
<td>● for MWG = excessive stroke between the set end positions</td>
<td></td>
</tr>
<tr>
<td>Invalid command</td>
<td>Invalid command</td>
<td></td>
</tr>
<tr>
<td>Replacement value</td>
<td>Substitute value</td>
<td></td>
</tr>
<tr>
<td>PCB failure</td>
<td>Sub-assembly failure</td>
<td></td>
</tr>
</tbody>
</table>
Appendix

16. Appendix

16.1. Selection overview for output contacts and indication lights (digital outputs DOUT)

Depending on the version, the AC is equipped with up to 12 output contacts (digital outputs).

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not assigned</td>
<td>–</td>
</tr>
</tbody>
</table>
| End position CLOSED | End position CLOSED reached
 | Indication depends on the type of seating and means either
 | • limit seating, end position CLOSED reached, or
 | • torque seating, end position CLOSED reached |
| End position OPEN | End position OPEN reached
 | Indication depends on the type of seating and means either
 | • limit seating, end position OPEN reached, or
 | • torque seating, end position OPEN reached |
| End p. CLOSED, blink | End position CLOSED reached or intermediate position reached
 | (The intermediate position is only indicated if parameter Signal interm. pos. M0167 = OPEN/CLOSED = On.)
 | Signal blinking: Actuator runs in direction CLOSE. |
| End p. OPEN, blink | End position OPEN reached or intermediate position reached.
 | (The intermediate position is only indicated if parameter Signal interm. pos. M0167 = OPEN/CLOSED = On.)
 | Signal blinking: Actuator runs in direction OPEN|
| Setpoint pos. reached | The position setpoint is is within max. error variable (outer dead band). |
| Running CLOSE | Actuator runs in direction CLOSE. |
| Running OPEN | Actuator runs in direction OPEN. |
| Selector sw. LOCAL | Selector switch is in position LOCAL. |
| Selector sw. REMOTE | Selector switch is in position REMOTE. |
| Selector sw. OFF | Selector switch is in position OFF. |
| Limit switch CLOSED | Limit switch operated in direction CLOSE |
| Limit switch OPEN | Limit switch operated in direction OPEN |
| Torque sw. CLOSED | Torque in direction CLOSE exceeded |
| Torque sw. OPEN | Torque in direction OPEN exceeded |
| Failure | Collective signal 10:
 | Indication according to NAMUR recommendation NE 107
 | Actuator function failure, output signals are invalid. |
| Function check | Collective signal 08:
 | Indication according to NAMUR recommendation NE 107
 | The actuator is being worked on; output signals are temporarily invalid. |
| Out of specification | Collective signal 07:
 | Indication according to NAMUR recommendation NE 107
 | Difference between setpoint and actual value is too important (exceeding the normal operation conditions). |
| Maintenance required | Collective signal 09:
 | Indication according to NAMUR recommendation NE 107
 | Recommendation to perform maintenance. |
| Fault | Collective signal 03:
 | Contains the result of a disjunction (OR operation) of all faults. |
| Warning | Collective signal 02:
 | Contains the result of an OR disjunction of all warnings. |
| Not ready REMOTE | Collective signal 04:
 | Contains the result of a disjunction (OR-operation) of the signals, forming the "Not ready REMOTE" group.
 | The actuator cannot be operated from REMOTE.
<pre><code> | The actuator can only be operated via the local controls. |
</code></pre>
<p>| Op. pause active | Actuator is in pause time of stepping mode |
| Start stepping mode | The actuator is within the set stepping range. |</p>
<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator running</td>
<td>Actuator is running (output drive is moving) Hard wired collective signal consisting of:</td>
</tr>
<tr>
<td></td>
<td>- Running LOCAL</td>
</tr>
<tr>
<td></td>
<td>- Running REMOTE</td>
</tr>
<tr>
<td></td>
<td>- Handwheel operation</td>
</tr>
<tr>
<td>Running LOCAL</td>
<td>Output drive rotates due to operation command from LOCAL.</td>
</tr>
<tr>
<td>Running REMOTE</td>
<td>Output drive rotates due to operation command from REMOTE.</td>
</tr>
<tr>
<td>Handwheel operation</td>
<td>Output drive rotates without electric operation command.</td>
</tr>
<tr>
<td>In intermed. position</td>
<td>The actuator is in an intermediate position e.g. neither in end position OPEN nor in end position CLOSED.</td>
</tr>
<tr>
<td>Intermed. pos. 1</td>
<td>Intermediate position 1 reached</td>
</tr>
<tr>
<td>Intermed. pos. 2</td>
<td>Intermediate position 2 reached</td>
</tr>
<tr>
<td>Intermed. pos. 3</td>
<td>Intermediate position 3 reached</td>
</tr>
<tr>
<td>Intermed. pos. 4</td>
<td>Intermediate position 4 reached</td>
</tr>
<tr>
<td>Intermed. pos. 5</td>
<td>Intermediate position 5 reached</td>
</tr>
<tr>
<td>Intermed. pos. 6</td>
<td>Intermediate position 6 reached</td>
</tr>
<tr>
<td>Intermed. pos. 7</td>
<td>Intermediate position 7 reached</td>
</tr>
<tr>
<td>Intermed. pos. 8</td>
<td>Intermediate position 8 reached</td>
</tr>
<tr>
<td>Input DIN 1</td>
<td>A high signal (+24 V DC) is present at digital input 1.</td>
</tr>
<tr>
<td>Input DIN 2</td>
<td>A high signal (+24 V DC) is present at digital input 2.</td>
</tr>
<tr>
<td>Input DIN 3</td>
<td>A high signal (+24 V DC) is present at digital input 3.</td>
</tr>
<tr>
<td>Input DIN 4</td>
<td>A high signal (+24 V DC) is present at digital input 4.</td>
</tr>
<tr>
<td>Input DIN 5</td>
<td>A high signal (+24 V DC) is present at digital input 5.</td>
</tr>
<tr>
<td>Input DIN 6</td>
<td>A high signal (+24 V DC) is present at digital input 6.</td>
</tr>
<tr>
<td>EMCY stop active</td>
<td>Operation mode EMERGENCY stop is active (EMERGENCY stop button has been pressed).</td>
</tr>
<tr>
<td>Torque fault CLOSE</td>
<td>Torque fault in direction CLOSE</td>
</tr>
<tr>
<td>Torque fault OPEN</td>
<td>Torque fault in direction OPEN</td>
</tr>
<tr>
<td>Torque fault</td>
<td>Torque fault in directions CLOSE or OPEN</td>
</tr>
<tr>
<td>Thermal fault</td>
<td>Motor protection tripped</td>
</tr>
<tr>
<td>Phase fault</td>
<td>One phase missing</td>
</tr>
<tr>
<td>Handwheel active</td>
<td>Manual operation is active (handwheel is engaged); optional signal.</td>
</tr>
<tr>
<td>PVST active</td>
<td>Partial Valve Stroke Test (PVST) is active.</td>
</tr>
<tr>
<td>PVST error</td>
<td>Partial Valve Stroke Test (PVST) could not be successfully completed.</td>
</tr>
<tr>
<td>PVST abort</td>
<td>Partial Valve Stroke Test (PVST) was aborted or could not be started. Remedy: Perform RESET or restart PVST.</td>
</tr>
<tr>
<td>Failure (Cfg)</td>
<td>This signal can be configured (parameter Failure (Cfg) M0879) and comprises a combination of the following signals which can also be configured:</td>
</tr>
<tr>
<td></td>
<td>- Fault (Cfg) M0880</td>
</tr>
<tr>
<td></td>
<td>- Warnings (Cfg) M0881</td>
</tr>
<tr>
<td></td>
<td>- Not ready REMOTE (Cfg) M0882</td>
</tr>
<tr>
<td>Interlock REMOTE</td>
<td>Function Interlock is active for operation mode REMOTE.</td>
</tr>
<tr>
<td>Interlock LOCAL</td>
<td>Function Interlock is active for operation mode Local.</td>
</tr>
<tr>
<td>Interlock OPEN</td>
<td>Interlock OPEN is active (enable signal for operation commands in direction OPEN available).</td>
</tr>
<tr>
<td>Interlock CLOSED</td>
<td>Interlock CLOSED is active (enable signal for operation commands in direction CLOSE available).</td>
</tr>
<tr>
<td>Interlock</td>
<td>The operation mode Interlock is active.</td>
</tr>
<tr>
<td>By-pass Sync Out</td>
<td><By-pass function> enable for operation commands of main or by-pass valves is active.</td>
</tr>
<tr>
<td>Interlock By-pass</td>
<td>Operation command executed without enable signal By-pass Sync Out.</td>
</tr>
<tr>
<td>Safe ESD</td>
<td>Safe ESD function (Emergency Shut Down) is active.</td>
</tr>
<tr>
<td>Safe STOP</td>
<td>Safe STOP function is active.</td>
</tr>
<tr>
<td>SIL fault</td>
<td>A SIL fault has occurred (collective signal).</td>
</tr>
<tr>
<td>SIL function active</td>
<td>A SIL function is active. Collective signal of both states, Safe ESD or Safe STOP.</td>
</tr>
<tr>
<td>System ok</td>
<td>The actuator is switched on and no fault is present</td>
</tr>
</tbody>
</table>
16.2. Selection overview of binary signals for digital inputs (DIN)

Depending on the version, the AC is equipped with up to 10 digital inputs. The inputs are designed for binary signals (standard input level: +24 V DC) and can be used, for example, to receive operation commands OPEN, STOP, CLOSE, to control intermediate positions or for the EMERGENCY signal.

Configuration of digital inputs

Required user level: Specialist (4).

Table 22:

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wm torque OPEN</td>
<td>Description</td>
</tr>
<tr>
<td>Wm torque CLOSE</td>
<td>Description</td>
</tr>
<tr>
<td>LPV Sync Out</td>
<td>LPV (Lift Plug Valve) synchronisation signal. Master or slave actuator are in an end position.</td>
</tr>
<tr>
<td>LPV run OPEN (SA)</td>
<td>Operation command in direction OPEN from the master actuator to the slave actuator (SA).</td>
</tr>
<tr>
<td>LPV run CLOSE (SA)</td>
<td>Operation command in direction CLOSE from the master actuator to the slave actuator (SA).</td>
</tr>
<tr>
<td>PVST required</td>
<td>(PVST) Partial Valve Stroke Test should be executed</td>
</tr>
<tr>
<td>FQM ready</td>
<td>FQM (fail safe) ready</td>
</tr>
<tr>
<td>FQM active</td>
<td>The fail safe function of the FQM (Fail safe) is active.</td>
</tr>
<tr>
<td>FQM end position OPEN</td>
<td>FQM has reached end position OPEN at the output drive side.</td>
</tr>
<tr>
<td>FQM end position CLOSED</td>
<td>FQM has reached end position CLOSED at the output drive side.</td>
</tr>
</tbody>
</table>

Actuator controls

AC 01.2/ACExC 01.2

Appendix
<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CW position 4</td>
<td>Clockwise approach of position 4</td>
</tr>
<tr>
<td>CCW position 4</td>
<td>Counterclockwise approach of position 4</td>
</tr>
<tr>
<td>CW</td>
<td>Clockwise actuator operation</td>
</tr>
<tr>
<td>CCW</td>
<td>Counterclockwise actuator operation</td>
</tr>
<tr>
<td>Input DIN 1</td>
<td>Signal for controlling output contact</td>
</tr>
<tr>
<td>Input DIN 2</td>
<td>Signal for controlling output contact</td>
</tr>
<tr>
<td>Input DIN 3</td>
<td>Signal for controlling output contact</td>
</tr>
<tr>
<td>Input DIN 4</td>
<td>Signal for controlling output contact</td>
</tr>
<tr>
<td>Enable LOCAL</td>
<td>Enables the selector switch function (LOCAL/OFF) on the local controls</td>
</tr>
<tr>
<td>Enable OPEN</td>
<td>Interlock: Enables operation command in direction OPEN</td>
</tr>
<tr>
<td>Enable CLOSE</td>
<td>Interlock: Enables operation command in direction CLOSE</td>
</tr>
<tr>
<td>Internal PID setpoint 2</td>
<td>Internal PID setpoint</td>
</tr>
<tr>
<td>Remote II activation</td>
<td>Activation of operation mode Remote II</td>
</tr>
<tr>
<td>Remote II OPEN</td>
<td>Operation command OPEN in operation mode Remote II</td>
</tr>
<tr>
<td>Remote II CLOSE</td>
<td>Operation command CLOSE in operation mode Remote II</td>
</tr>
<tr>
<td>Remote II STOP</td>
<td>Operation command STOP in operation mode Remote II</td>
</tr>
<tr>
<td>Execute PVST</td>
<td>PVST is executed</td>
</tr>
<tr>
<td>By-pass Sync In</td>
<td>Enable signal for <By-pass function></td>
</tr>
<tr>
<td>LPV Sync In</td>
<td>Enable signal for LPV function (synchronisation)</td>
</tr>
<tr>
<td>LPV end position CLOSED (SA)</td>
<td>LPV slave actuator has reached end position CLOSED</td>
</tr>
<tr>
<td>LPV sel. sw. REM (SA)</td>
<td>Selector switch of LPV slave actuator is in position REMOTE</td>
</tr>
<tr>
<td>LPV system ok (SA)</td>
<td>LPV slave actuator is ready for operation</td>
</tr>
<tr>
<td>PID setpoint I/O</td>
<td>Change-over of process controller setpoint source between fieldbus interface and I/O interface</td>
</tr>
<tr>
<td>PID actual value I/O</td>
<td>Change-over of process controller actual value source between fieldbus interface and I/O interface</td>
</tr>
</tbody>
</table>
Index

A
Acceleration (histogram) 121
Acceleration-frequency (histogram) 121
Activate/deactivate heater 76
Activate functions 102
Actual configuration 106
Actual value - indication on display 21
Actual value source - process controller 60
Actuator controls heater system 75
Actuator controls terminal plan 10
Actuator operation at the local controls 13
Actuator operation from remote 14
Actuator terminal plan 10
Actuator type (MPV) 69
Adaptive behaviour 50
Ambient temperature 10
Analogue output 1 29
Analogue output 1 adjustment 30
Analogue output 1 signal range 30
Analogue output 2 30
Analogue output 2 adjustment 31
Analogue output 2 signal range 30
Analogue outputs 29
Analogue signals 29
Appendix 133
Application functions 46
Automatic deblocking 74

B
Backlash compensation (MPV) 72
Basic settings 37
Binary input signals 135
Bluetooth 106
Bluetooth diagnostic 108
By-pass function 62

C
CDT 106, 106
Change-over between OPEN - CLOSE control and setpoint control 53
Characteristics 116, 116, 118, 119
Closing fully/opening fully 52
Commissioning 8
Commissioning (indications on display) 19
Configurable signals 27
Contrast 45
Control 10, 11, 33
Controller behaviour (process controller) 56
Control voltage 11
Correction of the direction of rotation 101
Corrective action 125
Cycles 95

D
Data export 105
Data import 105
Data Matrix code 11
Date 42
Date format 42
Deactivate heater monitoring within actuator controls 100
Dead band 51, 51
Dead band (MPV) 72
Dead time 52
Delay time 79
Delay time <EMERGENCY operation> 84
Device temperatures 124
Device type 10
Diagnostic Interface 109
Diagnostics 108
Digital inputs 135, 135
Digital inputs (diagnostics) 109
Digital outputs 27
Digital outputs (diagnostics) 109
Direct display via ID 15
Direction of rotation 101, 104
Direction of rotation: Directives 104
Display (indications) 19
Display formats 42
Display operating time 124
Down time 101
<table>
<thead>
<tr>
<th>Index</th>
<th>Actuator controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Electronic device ID 108</td>
</tr>
<tr>
<td></td>
<td>Electronics monitoring power supply 98</td>
</tr>
<tr>
<td></td>
<td>MEGERGENCY behaviour 79</td>
</tr>
<tr>
<td></td>
<td>MEGERGENCY operation 79, 81</td>
</tr>
<tr>
<td></td>
<td>MEGERGENCY stop 35</td>
</tr>
<tr>
<td></td>
<td>Enable functions 102</td>
</tr>
<tr>
<td></td>
<td>Enable operation commands 86</td>
</tr>
<tr>
<td></td>
<td>Enabling local controls 84</td>
</tr>
<tr>
<td></td>
<td>Enclosure protection 10</td>
</tr>
<tr>
<td></td>
<td>End position seating 37</td>
</tr>
<tr>
<td></td>
<td>End position tolerance 52</td>
</tr>
<tr>
<td></td>
<td>Enforce REMOTE control 85</td>
</tr>
<tr>
<td></td>
<td>Error - indication on display 19</td>
</tr>
<tr>
<td></td>
<td>Error variable 51</td>
</tr>
<tr>
<td></td>
<td>Event report 115</td>
</tr>
<tr>
<td>F</td>
<td>Factory setting 104</td>
</tr>
<tr>
<td></td>
<td>Fail safe (diagnostic) 112</td>
</tr>
<tr>
<td></td>
<td>Failure behaviour 77</td>
</tr>
<tr>
<td></td>
<td>Failure functions 77</td>
</tr>
<tr>
<td></td>
<td>Failure - indication on display 25</td>
</tr>
<tr>
<td></td>
<td>Failure operation 77</td>
</tr>
<tr>
<td></td>
<td>Failure position 78</td>
</tr>
<tr>
<td></td>
<td>Failure source (MEGERENCY operation) 81</td>
</tr>
<tr>
<td></td>
<td>Failure source (failure operation) 77</td>
</tr>
<tr>
<td></td>
<td>Failure source (Interlock) 87</td>
</tr>
<tr>
<td></td>
<td>Fault - indication on display 23</td>
</tr>
<tr>
<td></td>
<td>Fault signal - configurable 27</td>
</tr>
<tr>
<td></td>
<td>Firmware update 106</td>
</tr>
<tr>
<td></td>
<td>Firmware version 106</td>
</tr>
<tr>
<td></td>
<td>FQM (diagnostics) 112</td>
</tr>
<tr>
<td></td>
<td>Frequency (histogram) 121</td>
</tr>
<tr>
<td></td>
<td>Function check - indication on display 24</td>
</tr>
<tr>
<td></td>
<td>Functions: activate/enable 102</td>
</tr>
<tr>
<td></td>
<td>Fuses 125</td>
</tr>
<tr>
<td>G</td>
<td>Gear reduction ratio 69</td>
</tr>
<tr>
<td>H</td>
<td>Heater 99</td>
</tr>
<tr>
<td></td>
<td>Heater in switch compartment 76</td>
</tr>
<tr>
<td></td>
<td>Heater monitoring 99</td>
</tr>
<tr>
<td></td>
<td>Heater monitoring time 100</td>
</tr>
<tr>
<td></td>
<td>Heater on control unit 76</td>
</tr>
<tr>
<td></td>
<td>Heater system 99</td>
</tr>
<tr>
<td></td>
<td>Heater system monitoring 99</td>
</tr>
<tr>
<td></td>
<td>Histogram 119, 120, 121, 121</td>
</tr>
<tr>
<td></td>
<td>Histograms 119</td>
</tr>
<tr>
<td></td>
<td>Home port 70</td>
</tr>
<tr>
<td>I</td>
<td>Identification 10</td>
</tr>
<tr>
<td></td>
<td>Indication light colour 26</td>
</tr>
<tr>
<td></td>
<td>Indication lights 25</td>
</tr>
<tr>
<td></td>
<td>Indications 19</td>
</tr>
<tr>
<td></td>
<td>Indications on display 19</td>
</tr>
<tr>
<td></td>
<td>Input current 11</td>
</tr>
<tr>
<td></td>
<td>Input signal 11</td>
</tr>
<tr>
<td></td>
<td>Interface (diagnostics) 109</td>
</tr>
<tr>
<td></td>
<td>Interlock: 86</td>
</tr>
<tr>
<td></td>
<td>Interlock: by-pass 83</td>
</tr>
<tr>
<td></td>
<td>Interlock behaviour 87</td>
</tr>
<tr>
<td></td>
<td>Intermediate position indication via LEDs 25</td>
</tr>
<tr>
<td></td>
<td>Intermediate positions 46</td>
</tr>
<tr>
<td></td>
<td>Internal process setpoint 58</td>
</tr>
<tr>
<td></td>
<td>Intrusive 12</td>
</tr>
<tr>
<td></td>
<td>Inverse operation 58</td>
</tr>
<tr>
<td>L</td>
<td>Language in the display 17</td>
</tr>
<tr>
<td></td>
<td>LEDs (indication lights) 25</td>
</tr>
<tr>
<td></td>
<td>Lift Plug Valve 64</td>
</tr>
<tr>
<td></td>
<td>Limit seating 37</td>
</tr>
<tr>
<td></td>
<td>Limit setting range 53</td>
</tr>
<tr>
<td></td>
<td>Limit switching 40</td>
</tr>
<tr>
<td></td>
<td>Local actuator operation 13</td>
</tr>
<tr>
<td></td>
<td>Local control 13</td>
</tr>
<tr>
<td></td>
<td>Local controls 13</td>
</tr>
<tr>
<td></td>
<td>Local setting 14</td>
</tr>
<tr>
<td></td>
<td>Local Stop 88</td>
</tr>
<tr>
<td></td>
<td>Local stop: by-pass 83</td>
</tr>
<tr>
<td></td>
<td>Loss of process setpoint 58</td>
</tr>
<tr>
<td></td>
<td>Loss of signal 77, 78</td>
</tr>
<tr>
<td></td>
<td>Loss of signal process setpoint 58</td>
</tr>
<tr>
<td></td>
<td>LPV 64</td>
</tr>
</tbody>
</table>
M
- Main menu 15
- Mains voltage 10
- Maintenance 8
- Maintenance required - indication on display 24
- Maintenance signals 122
- Menu navigation 14
- MODE 53
- Monitoring functions 93
- Motion detector 97
- Motor heater 76
- Motor protection, by-pass 82
- Motor protection behaviour 94
- Motor protection monitoring 94, 94
- Motor running time position histogram 119
- Motor running time-temperature (histogram) 120
- Motor running time-torque (histogram) 121
- Motor starts 95
- Multiport valve function 68
- Multiport valve positions – indication on display 22
- MWG (diagnostic) 111

N
- Name plate 10
- Non-Intrusive 12
- Not ready REMOTE - indication on display 23
- Number format 43, 43
- Number of ports (positions) 69

O
- Off time 49, 61
- On time 61, 95
- On time monitoring (diagnostics) 111
- OPEN - CLOSE control (Remote OPEN - CLOSE) 53
- Operating data 114
- Operation 8, 13, 32
- Operation commands - indications on display 21
- Operation profile 48
- Operation profile: by-pass 83
- Operation time monitoring 96
- Order number 10, 10
- Out of specification - indication on display 24
- Output contacts 27
- Output signals 27
- Overload protection 93
- Overrun 51

P
- Partial Valve Stroke Test 89
- Password 16
- Password change 17
- Password entry 16
- Permissible operation time 96
- Permissible starts/h 96
- Phase failure monitoring 101
- Phase sequence detection 101
- Plant Asset Management 114
- Positioner 50
- Positioner (diagnostic) 111
- Positioner - indication on display 22
- Positions (pivot points) 46
- Positions – indication on display 22
- Position-time characteristic 118
- Position transmitter (diagnostic) 110
- Position unit 43
- Potentiometer (diagnostic) 110
- Power class 10
- Power class for switchgear 11
- Primary fuses 125
- Priority REMOTE 85
- Process controller 55
- Process controller (diagnostics) 112
- Process factor unit 44
- Process setpoint – loss 58
- Production, year 11
- Proportional amplification Kp 59
- Protective measures 8
- Push-to-run operation local 32
- Push-to-run operation Remote 33
- PVST 89

Q
- Qualification of staff 8

R
- Rate time Td 59
- Reaction monitoring 97
- Reaction time 97
- Reaction time, permissible 97
- Reaction time of heater monitoring 100
- Remote actuator operation 14
- Reset time Tn 59
- Reversing prevention time 77
- Running time 95
- Running time (motor) 119, 120, 121
- RWG (diagnostic) 110
Index

AC 01.2/ACExC 01.2

S
Safety instructions 8
Safety instructions/warnings 8
Selection overview for output 133
contacts and indication lights
Selector switch functions 84
Self-retaining local 32
Self-retaining Remote 33
Serial number 10 , 11
Service 35
Service functions 104
Setpoint - indication on display 22
Setpoint source - process controller 57
Signal behaviour (multiport valve) 73
Signal loss 78
Signal output units (AIN) 45
Signals 27
Signals (analogue) 29
Signals - configurable 27
Simulation 112
Size 10
Sollwertansteuerung (Fern SOLL)
Split Range operation 54
Standards 8
Start of stepping mode 61
Status menu 15
Status signals 27
Status signals - configurable 27
Stepping mode 60
Stepping mode: by-pass 83
Stop step 61
Support App 11 , 11
Switching off for reaction time error 97

T
Target configuration 106
Temperature (motor) 120
Temperature indication 124
Temperature monitoring 99
Temperature-time characteristic
Temperature unit 43
Thermal monitoring 94
Time 42
Torque (histogram) 121
Torque by-pass 93 , 93
Torque - indication on display 21
Torque monitoring 93
Torque seating 37
Torque switching 38 , 39
Torque switching: by-pass 82
Torque-travel characteristic 116
Torque unit 43
Torque warning 93
Two-wire control 49
Type (device type) 10
Type designation 10
Type of seating for end positions 37

U
User level 16

V
Valve position - indication on display 20
Verification of sub-assemblies 100

W
Warnings - indication on display 23
Wiring diagram 10
Working value units (AIN) 45

Y
Year of production 11
Parameter index

0
0/4 mA (initial value) 31

2
20 mA (final value) 31
24 V DC customer 130
24 V DC external 126
24 V DC internal 131

A
Abs. end pos. CLOSED 111
Abs. end pos. OPEN 111
Absolute value 111
Accept actual config. 106
Activation 44, 44, 45, 45
Actual position 29, 111
Actual process value 112
Actuator behaviour 97
Actuator type 69
Adapt rotary dir. 101
Adjustment AOUT 1 30
Adjustment AOUT 2 31

B
Backlash comp. 72
Bluetooth add.partner 107, 109
Bluetooth address 107, 109
Buffer size 116
By-pass application 64
By-pass Interlock 83
By-pass Local STOP 83
By-pass operat.profile 83
By-pass timer 83
By-pass torque 82

C
Calibration 132
Change passwords 17
Closing rotation 104
Coding DOUT 1 27
Colour ind.light 1 26
Colour ind.light 2 26
Colour ind.light 3 26
Colour ind.light 4 26
Colour ind.light 5 26
Command fieldbus 130
Command REMOTE I 129
Command REMOTE II 129
Config. error REMOTE 127, 127, 131
Config. operat. profile 129
Config. PID controller 129
Config. warning 126, 126, 128
Configuration EMCY 129
Configuration error 127, 127, 129
Create factory settings 105

D
Date and time 42
Dead band CLOSE 51
Dead band OPEN 51
Deblocking attempts 75
Delay MA direct.CLOSE 67
Delay MA direct.OPEN 67
Delay SA direct.CLOSE 68
Detect. time dt 98
Detect. time dt (MWG) 98
Device ID 108
Device tag 107, 109
DIN 1 configuration 129
Disabled 128

E
EMCY behav. active 128
EMCY failure source 81
EMCY operation 81
EMCY operation mode 81
EMCY position 82
EMCY position MPV 82
EMCY stop active 128
End position CLOSED 37
End position OPEN 37
End stepping CLOSE 61
End stepping OPEN 61
Event filter for Events 115
Export all data 105
Export all parameters 105
Export event report 105

F
Fail.beh. config. 129
Failure 125
Failure (Cfg) 28
Failure behav. active 126
Failure position MPV 79
Failure reaction EMCY 80
Failure source 77
Fault 125
Fault (Cfg) 28
Fault no reaction 128
File size 115
Firmware 106
FO cables 112
FO configuration 129
FOM fail safe end.pos. 112
FOM fault initialisation 112
FOM ready 112
FOM request 112
FOM spring wound 112
FOM trigger diagn. 112
Function check 125
<table>
<thead>
<tr>
<th>Actuator controls AC 01.2/ACExC 01.2</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handwheel active 128</td>
<td>I/O interface 128</td>
</tr>
<tr>
<td>Heat.monitor.config. 129</td>
<td>IE 24 V AC 130</td>
</tr>
<tr>
<td>Heater control unit 76</td>
<td>IE backup 130</td>
</tr>
<tr>
<td>Heater monitor 100</td>
<td>IE bus exception 130</td>
</tr>
<tr>
<td>Heating sys. mon. time 100</td>
<td>IE config. pos. transm. 129</td>
</tr>
<tr>
<td>High limit AIN 1 54</td>
<td>IE EEPROM 130</td>
</tr>
<tr>
<td>High limit target value 55</td>
<td>IE fieldbus 130</td>
</tr>
<tr>
<td>Hydraulics fault 129</td>
<td>IE file access 130</td>
</tr>
<tr>
<td>Hydraulics warning 131</td>
<td>IE Hall 1 calibration 130</td>
</tr>
<tr>
<td>Hysteresis 48 , 74</td>
<td>IE Hall 5 calibration 130</td>
</tr>
<tr>
<td>Hysteresis 1 48</td>
<td>IE I/O interface 131</td>
</tr>
<tr>
<td></td>
<td>IE LC 130</td>
</tr>
<tr>
<td></td>
<td>IE LC exception 130</td>
</tr>
<tr>
<td></td>
<td>IE logic 130</td>
</tr>
<tr>
<td></td>
<td>IE logic exception 130</td>
</tr>
<tr>
<td></td>
<td>IE MCM 129</td>
</tr>
<tr>
<td></td>
<td>IE mot. prot. monitor 130</td>
</tr>
<tr>
<td></td>
<td>IE MWG 130</td>
</tr>
<tr>
<td></td>
<td>IE MWG calibration 130</td>
</tr>
<tr>
<td></td>
<td>IE MWG end positions 130</td>
</tr>
<tr>
<td></td>
<td>IE MWG Exception 130</td>
</tr>
<tr>
<td></td>
<td>IE output defective 130</td>
</tr>
<tr>
<td></td>
<td>IE parameter 130</td>
</tr>
<tr>
<td></td>
<td>IE parameter config. 129</td>
</tr>
<tr>
<td></td>
<td>IE phase monitoring 130</td>
</tr>
<tr>
<td></td>
<td>IE position transmitter 130</td>
</tr>
<tr>
<td></td>
<td>IE PSO 129</td>
</tr>
<tr>
<td></td>
<td>IE registration 130</td>
</tr>
<tr>
<td></td>
<td>IE remote interface 131</td>
</tr>
<tr>
<td></td>
<td>IE remote Prm Config 131</td>
</tr>
<tr>
<td></td>
<td>IE selector switch 130</td>
</tr>
<tr>
<td></td>
<td>IE startup FB 130</td>
</tr>
<tr>
<td></td>
<td>IE startup sub-assy 130</td>
</tr>
<tr>
<td></td>
<td>IE version 130</td>
</tr>
<tr>
<td></td>
<td>Import all parameters 106</td>
</tr>
<tr>
<td>Incorrect phase seq 127 , 129</td>
<td></td>
</tr>
<tr>
<td>Indicat. light 5 (right) 25</td>
<td></td>
</tr>
<tr>
<td>Indication light 1 (left) 25</td>
<td></td>
</tr>
<tr>
<td>Indication light 2 25</td>
<td></td>
</tr>
<tr>
<td>Indication light 3 25</td>
<td></td>
</tr>
<tr>
<td>Indication light 4 25</td>
<td></td>
</tr>
<tr>
<td>Inner dead b. CLOSE 111</td>
<td></td>
</tr>
<tr>
<td>Inner dead b. OPEN 111</td>
<td></td>
</tr>
<tr>
<td>Input AIN 1 29</td>
<td></td>
</tr>
<tr>
<td>Input AIN 2 29</td>
<td></td>
</tr>
<tr>
<td>Input of setpoint position 54</td>
<td></td>
</tr>
<tr>
<td>Interface 109</td>
<td></td>
</tr>
<tr>
<td>Interface status 109</td>
<td></td>
</tr>
<tr>
<td>Interlock 87 , 128</td>
<td></td>
</tr>
<tr>
<td>Interlock by-pass 128</td>
<td></td>
</tr>
<tr>
<td>Interlock failure source 87</td>
<td></td>
</tr>
<tr>
<td>Internal error 127 , 127 , 130</td>
<td></td>
</tr>
<tr>
<td>Internal warning 126 , 126 , 130</td>
<td></td>
</tr>
<tr>
<td>Interval position-time 119</td>
<td></td>
</tr>
<tr>
<td>Invalid command 132</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Language</td>
<td>17</td>
</tr>
<tr>
<td>Limit CLOSE</td>
<td>53</td>
</tr>
<tr>
<td>Limit OPEN</td>
<td>53</td>
</tr>
<tr>
<td>Limit starts CLOSE</td>
<td>124</td>
</tr>
<tr>
<td>Limit starts OPEN</td>
<td>124</td>
</tr>
<tr>
<td>Limit turns CLOSE</td>
<td>124</td>
</tr>
<tr>
<td>Limit turns OPEN</td>
<td>124</td>
</tr>
<tr>
<td>Local STOP</td>
<td>88</td>
</tr>
<tr>
<td>Low limit AIN 1</td>
<td>54</td>
</tr>
<tr>
<td>Low limit RWG</td>
<td>111</td>
</tr>
<tr>
<td>Low limit target value</td>
<td>55</td>
</tr>
<tr>
<td>Low limit Uspan</td>
<td>110</td>
</tr>
<tr>
<td>LPV application</td>
<td>67</td>
</tr>
<tr>
<td>LPV function</td>
<td>67</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Mains quality</td>
<td>128</td>
</tr>
<tr>
<td>Maintenance interval</td>
<td>122 , 123</td>
</tr>
<tr>
<td>Maintenance required</td>
<td>125</td>
</tr>
<tr>
<td>Max. value at 100.0 %</td>
<td>44 , 44 , 45 , 45</td>
</tr>
<tr>
<td>Maximum stroke</td>
<td>111</td>
</tr>
<tr>
<td>Minimum stroke</td>
<td>111</td>
</tr>
<tr>
<td>Modulating behaviour</td>
<td>57</td>
</tr>
<tr>
<td>Monitor 24 V DC cust.</td>
<td>99</td>
</tr>
<tr>
<td>Monitor 24 V DC ext.</td>
<td>99</td>
</tr>
<tr>
<td>Monitor heat. system</td>
<td>100</td>
</tr>
<tr>
<td>Motor running time</td>
<td>129</td>
</tr>
<tr>
<td>MPV function</td>
<td>69 , 74</td>
</tr>
<tr>
<td>MPV home port</td>
<td>70</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Not ready REMOTE</td>
<td>125</td>
</tr>
<tr>
<td>Not ready REMOTE (Cfg)</td>
<td>28</td>
</tr>
<tr>
<td>Not referenced</td>
<td>132</td>
</tr>
<tr>
<td>Number of ports</td>
<td>69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>O</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Off time 1</td>
<td>49</td>
</tr>
<tr>
<td>Off time CLOSE</td>
<td>61</td>
</tr>
<tr>
<td>Off time OPEN</td>
<td>62</td>
</tr>
<tr>
<td>Off times</td>
<td>49</td>
</tr>
<tr>
<td>Oil leakage</td>
<td>129</td>
</tr>
<tr>
<td>Oil level</td>
<td>129</td>
</tr>
<tr>
<td>On time/h</td>
<td>112</td>
</tr>
<tr>
<td>On time CLOSE</td>
<td>61</td>
</tr>
<tr>
<td>On time monitoring</td>
<td>96 , 111</td>
</tr>
<tr>
<td>On time OPEN</td>
<td>62</td>
</tr>
<tr>
<td>On time warning 1</td>
<td>95</td>
</tr>
<tr>
<td>On time warning 2</td>
<td>95</td>
</tr>
<tr>
<td>Op. com. PID contr.</td>
<td>112</td>
</tr>
<tr>
<td>Op. time warning</td>
<td>126</td>
</tr>
<tr>
<td>Oper. mode Interlock</td>
<td>87</td>
</tr>
<tr>
<td>Oper. press. config.</td>
<td>131</td>
</tr>
<tr>
<td>Oper. time monitoring</td>
<td>96 , 96</td>
</tr>
<tr>
<td>Operat. pressure min</td>
<td>131</td>
</tr>
<tr>
<td>Operating time</td>
<td>124</td>
</tr>
<tr>
<td>Operational info</td>
<td>114 , 114 , 114</td>
</tr>
<tr>
<td>Operational info total</td>
<td>114</td>
</tr>
<tr>
<td>Operation behaviour</td>
<td>48</td>
</tr>
<tr>
<td>Operation behaviour 1</td>
<td>48</td>
</tr>
<tr>
<td>Operation mode</td>
<td>96</td>
</tr>
<tr>
<td>Outer dead b. CLOSE</td>
<td>111</td>
</tr>
<tr>
<td>Outer dead b. OPEN</td>
<td>111</td>
</tr>
<tr>
<td>Outer dead band</td>
<td>52</td>
</tr>
<tr>
<td>Out of range</td>
<td>132</td>
</tr>
<tr>
<td>Out of specification</td>
<td>125</td>
</tr>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>PCB failure</td>
<td>132</td>
</tr>
<tr>
<td>Perm.op. time, manual</td>
<td>96</td>
</tr>
<tr>
<td>Perm. running time/h</td>
<td>96</td>
</tr>
<tr>
<td>Phase fault</td>
<td>127, 129</td>
</tr>
<tr>
<td>Phase monitoring</td>
<td>101</td>
</tr>
<tr>
<td>Pivot point 1</td>
<td>46</td>
</tr>
<tr>
<td>Position</td>
<td>44, 44</td>
</tr>
<tr>
<td>Positioner hyst. CLOSE</td>
<td>52</td>
</tr>
<tr>
<td>Positioner hyst. OPEN</td>
<td>52</td>
</tr>
<tr>
<td>Position-time</td>
<td>118</td>
</tr>
<tr>
<td>Position transm. MWG</td>
<td>111</td>
</tr>
<tr>
<td>Position transm. potent.</td>
<td>110</td>
</tr>
<tr>
<td>Position transm. RWG</td>
<td>111</td>
</tr>
<tr>
<td>Potent. raw value /mV</td>
<td>110</td>
</tr>
<tr>
<td>Pressure rise fault</td>
<td>129</td>
</tr>
<tr>
<td>Process factor</td>
<td>44, 44</td>
</tr>
<tr>
<td>Process setpoint</td>
<td>112</td>
</tr>
<tr>
<td>Pump starts</td>
<td>131</td>
</tr>
<tr>
<td>PVST abort</td>
<td>126</td>
</tr>
<tr>
<td>PVST active</td>
<td>128</td>
</tr>
<tr>
<td>PVST behaviour</td>
<td>91</td>
</tr>
<tr>
<td>PVST fault</td>
<td>126</td>
</tr>
<tr>
<td>PVST monitoring</td>
<td>91</td>
</tr>
<tr>
<td>PVST operating time</td>
<td>91</td>
</tr>
<tr>
<td>PVST operation mode</td>
<td>90</td>
</tr>
<tr>
<td>PVST reminder</td>
<td>92</td>
</tr>
<tr>
<td>PVST reminder period</td>
<td>92</td>
</tr>
<tr>
<td>PVST reversing time</td>
<td>91</td>
</tr>
<tr>
<td>PVST stroke</td>
<td>91</td>
</tr>
<tr>
<td>Raw val. pos. CLOSED</td>
<td>110, 111</td>
</tr>
<tr>
<td>Raw val. pos. OPEN</td>
<td>110, 111</td>
</tr>
<tr>
<td>Reduction ratio</td>
<td>69, 72</td>
</tr>
<tr>
<td>Reload languages</td>
<td>105</td>
</tr>
<tr>
<td>Replacement value</td>
<td>132</td>
</tr>
<tr>
<td>Reset characteristic</td>
<td>117</td>
</tr>
<tr>
<td>Reset factory settings</td>
<td>105</td>
</tr>
<tr>
<td>Reset operation. info</td>
<td>114</td>
</tr>
<tr>
<td>Revers. prevent. time</td>
<td>77</td>
</tr>
<tr>
<td>RTC button cell</td>
<td>126</td>
</tr>
<tr>
<td>RTC not set</td>
<td>126</td>
</tr>
<tr>
<td>Running dir. Interlock</td>
<td>88</td>
</tr>
<tr>
<td>RWG raw value /mA</td>
<td>111</td>
</tr>
<tr>
<td>T</td>
<td>W</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Temperature-time</td>
<td>Warnings</td>
</tr>
<tr>
<td>Thermal by-pass</td>
<td>Warnings (Cfg)</td>
</tr>
<tr>
<td>Thermal fault</td>
<td>Working values (AIN)</td>
</tr>
<tr>
<td>Time format</td>
<td>Wrn Backup in use</td>
</tr>
<tr>
<td>Timer CLOSE</td>
<td>Wrn Dead bands</td>
</tr>
<tr>
<td>Timer OPEN</td>
<td>Wrn FOC</td>
</tr>
<tr>
<td>Tolerance CLOSE</td>
<td>Wrn event mark</td>
</tr>
<tr>
<td>Tolerance OPEN</td>
<td>Wrn FOC cable budget</td>
</tr>
<tr>
<td>Tolerance range</td>
<td>Wrn FOC connection</td>
</tr>
<tr>
<td>Torque</td>
<td>Wrn gearbox temp.</td>
</tr>
<tr>
<td>Torque config. CLOSE</td>
<td>Wrn heater</td>
</tr>
<tr>
<td>Torque config. OPEN</td>
<td>Wrn input AIN 1</td>
</tr>
<tr>
<td>Torque fault CLOSE</td>
<td>Wrn input AIN 2</td>
</tr>
<tr>
<td>Torque fault OPEN</td>
<td>Wrn motor temp.</td>
</tr>
<tr>
<td>Torque-travel</td>
<td>Wrn no reaction</td>
</tr>
<tr>
<td>Torque wrn CLOSE</td>
<td>Wrn on time running</td>
</tr>
<tr>
<td>Torque wrn OPEN</td>
<td>Wrn on time starts</td>
</tr>
<tr>
<td>Travel diff. dx</td>
<td>Wrn range act.pos.</td>
</tr>
<tr>
<td>Travel diff. dx (MWG)</td>
<td>Wrn ref.actual position</td>
</tr>
<tr>
<td>Tripping time</td>
<td>Wrn setpoint position</td>
</tr>
<tr>
<td>Trip torque CLOSE</td>
<td>Wrn Setpoint Source</td>
</tr>
<tr>
<td>Trip torque OPEN</td>
<td>Wrn sign.loss act.pos.</td>
</tr>
<tr>
<td>Type of seating</td>
<td>Wrn Tm mark</td>
</tr>
<tr>
<td></td>
<td>Wrn torque CLOSE</td>
</tr>
<tr>
<td></td>
<td>Wrn torque OPEN</td>
</tr>
<tr>
<td></td>
<td>Wrong oper. cmd</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
</tr>
<tr>
<td>Units</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Volt.level diff. potent.</td>
</tr>
</tbody>
</table>
AUMA worldwide

Europe

AUMA Riester GmbH & Co. KG

Plant Müllheim
DE 79373 Müllheim
Tel +49 7631 809 - 0
riester@auma.com
www.auma.com

Plant Ostfildern-Nellingen
DE 73747 Ostfildern
Tel +49 711 34803 - 0
riester@wof.auma.com

Service-Center Bayern
DE 85386 Eching
Tel +49 81 65 9017- 0
Riester@scb.auma.com

Service-Center Köln
DE 50858 Köln
Tel +49 2234 2037 - 900
Service@sck.auma.com

Service-Center Magdeburg
DE 39167 Niederndodeleben
Tel +49 39204 759 - 0
Service@scm.auma.com

AUMA-Armaturenantriebe Ges.m.b.H.
AT 2512 Tribuswinkel
Tel +43 2252 82540
office@auma.at
www.auma.at

AUMA BENELUX B.V. B. A.
BE 8800 Roeselare
Tel +32 51 24 24 80
office@auma.be
www.auma.nl

ProStream Group Ltd.
BG 1632 Sofia
Tel +359 2 9179-337
valtchev@prostream.bg
www.prostream.bg

OOO “Dunkan-Privod”
BY 220004 Minsk
Tel +375 29 6945574
belarus@auma.ru
www.zatvor.by

AUMA (Schweiz) AG
CH 8965 Berikon
Tel +41 566 400945
Rettich.P@ch.auma.com

AUMA Servopohony spol. s.r.o.
CZ 250 01 Brandýs n.L.-St.Boleslav
Tel +420 326 396 993
auma-s@auma.cz
www.auma.cz

GRØNBECH & SØNNER A/S
DK 2450 København SV
Tel +45 33 26 63 00
GS@g-s.dk
www.g-s.dk

IBEROPLAN S.A.
ES 28027 Madrid
Tel +34 91 3717130
iberoplan@iberoplan.com

AUMA Finlad Oy
FI 02230 Espoo
Tel +358 9 5840 22
auma@auma.fi
www.auma.fi

AUMA France S.A.R.L.
FR 95157 Taverny Cedex
Tel +33 1 39327277
info@auma.fr
www.auma.fr

AUMA ACTUATORS Ltd.
GB Clevedon, North Somerset BS21 6TH
Tel +44 1275 871141
mail@auma.co.uk
www.auma.co.uk

D. G. Bellos & Co. O.E.
GR 13673 Acharnai, Athens
Tel +30 210 2409485
info@dgbellos.gr

APIS CENTAR d. o. o.
HR 10437 Bestovje
Tel +385 1 6531 485
auma@apis-centar.com
www.apis-centar.com

Falkinn HF
IS 108 Reykjavik
Tel +00354 540 7000
os@falkinn.is
www.falkinn.is

AUMA ITALIANA S.r.l. a socio unico
IT 20023 Cerro Maggiore (MI)
Tel +39 0331 51351
info@auma.it
www.auma.it

AUMA BENELUX B.V.
LU Leiden (NL)
Tel +31 71 581 40 40
office@auma.nl
www.auma.nl

AUMA Polska Sp. z o.o.
PL 41-219 Sosnowiec
Tel +48 32 783 52 00
biuro@auma.com.pl
www.auma.com.pl

AUMA-LUSA Representative Office, Lda.
PT 2730-033 Barcarena
Tel +351 211 307 100
geral@aumalusa.pt

SAUTECH
RO 011783 Bucuresti
Tel +40 372 303982
office@sautech.ro

OOO PRIWODY AUMA
RU 141402 Khimki, Moscow region
Tel +7 495 221 64 28
aumarussia@auma.ru
www.auma.ru

OOO PRIWODY AUMA
RU 125362 Moscow
Tel +7 495 787 78 21
aumarussia@auma.ru
www.auma.ru

ERICHS ARMATUR AB
SE 20039 Malmö
Tel +46 40 311550
info@erichsarmatur.se
www.erichsarmatur.se

ELSO-b, s.r.o.
SK 94901 Nitra
Tel +421 905/336-926
elsob@stonline.sk

Auma Endüstri Kontrol Sistemleri Limited
Sirketi
TR 06810 Ankara
Tel +90 312 217 32 88
info@auma.com.tr

AUMA Technology Automations Ltd
UA 02099 Kiev
Tel +38 044 586-53-03
auma-tech@aumatech.com.ua

Africa

Solution Technique Contrôle Commande
DZ Bir Mourad Rais, Algiers
Tel +213 21 56 42 09/18
stcco@wissal.dz

A.T.E.C.
EG Cairo
Tel +20 2 23599680 - 23590861
contactus@atec-eg.com

SAMIREG
MA 203000 Casablanca
Tel +212 5 22 40 09 65
samireg@menara.ma

MANZ INCORPORATED LTD.
NG Port Harcourt
Tel +234-84-462741
mail@manzincorporated.com
www.manzincorporated.com
AUMA worldwide

AUMA South Africa (Pty) Ltd.
ZA 1560 Springs
Tel +27 11 3632880
aumasa@mweb.co.za

America

AUMA Argentina Rep.Office
AR Buenos Aires
Tel +54 11 4737 9026
contacto@aumaargentina.com.ar

AUMA Automação do Brazil Ltda.
BR Sao Paulo
Tel +55 11 4612-3477
contato@auma-br.com

TROY -ONTOR Inc.
CA L4N 8X1 Barrie, Ontario
Tel +1 705 721-8246
troy-ontor@troy-ontor.ca

AUMA Chile Representative Office
CL 9500414 Buin
Tel +56 2 821 4108
aumachile@auma-chile.cl

Ferrostaal de Colombia Ltda.
CO Bogotá D.C.
Tel +57 1 401 1300
dorian.hernandez@ferrostaal.com

AUMA Region Andina & Centroamérica
EC Quito
Tel +593 2 245 4614
auma}@auma-ac.com

Corsusa International S.A.C.
PE Miraflores - Lima
Tel +51144-1200 / 0044 / 2321
corsusa@corsusa.com

Control Technologies Limited
TT Marabella, Trinidad, W.I.
Tel + 1 868 658 1744/5011
www.clitech.com

AUMA ACTUATORS INC.
US PA 15317 Canonsburg
Tel +1 724-743-AUMA (2862)
mailbox@auma-usa.com
www.auma-usa.com

Suplibarca
VE Maracaibo, Estado, Zulia
Tel +58 261 7 555 667
suplibarca@intercable.net.ve

Asia

AUMA Actuators UAE Support Office
AE 287 Abu Dhabi
Tel +971 26338688
Nagaraj,Shetty@auma.com

AUMA Actuators Middle East
BH 152 68 Salimabad
Tel +973 17896585
salesme@auma.com

Mikuni (B) Sdn. Bhd.
BN KA1189 Kuala Belait
Tel + 673 3331269 / 3331272
mikuni@brunet.bn

AUMA Actuators (China) Co., Ltd
CN 215499 Taicang
Tel +86 512 3302 6900
mailbox@auma-china.com
www.auma-china.com

PERFECT CONTROLS Ltd.
HK Tsuen Wan, Kwiloon
Tel +852 2493 7726
joelp@perfectcontrols.com.hk

PT. Carakamas Inti Alam
ID 11460 Jakarta
Tel +62 152607952-55
auma-jkt@indo.net.id

AUMA INDIA PRIVATE LIMITED.
IN 560 058 Bangalore
Tel +91 80 2839 4656
info@auma.co.in
www.auma.co.in

ITG - Iranians Torque Generator
IR 13998-34411 Teheran
Tel +982144545654
info@itg-co.ir

Trans-Jordan Electro Mechanical Supplies
JO 11133 Amman
Tel +962 - 6 - 5332020
info@transjordan.net

AUMA JAPAN Co., Ltd.
JP 211-0016 Kawasaki-shi, Kanagawa
Tel +81-(0)44-863-8371
mailbox@auma.co.jp
www.auma.co.jp

DW Controls Co., Ltd.
KR 153-702 Gason-dong, GeumChun-Gu,,
Seoul
Tel +82 2 2624 3400
import@actuatorbank.com
www.actuatorbank.com

Al-Arfaj Engineering Co WLL
KW 22004 Salmiyah
Tel +965 24817448
info@arfajengg.com
www.arfajengg.com

Too "Armaturen Center"
KZ 060005 Atyrau
Tel +7 7122 454 602
armacentre@bk.ru

Network Engineering
LB 4501 7401 JBEIL, Beirut
Tel +961 9 944080
nabil.ibrahim@networkenglb.com
www.networkenglb.com

AUMA Malaysia Office
MY 70300 Seremban, Negeri Sembilan
Tel +606 633 1988
sales@auma.com.my

Mustafa Sultan Science & Industry Co LLC
OM Ruwi
Tel +968 24 636036
r-negi@mustasafusultan.com

FLOWWORK TECHNOLOGIES CORPORATION
PH 1550 Mandaluyong City
Tel +63 2 532 4058
flowwork@pltdsl.net

M & C Group of Companies
PK 54000 Cavalry Ground, Lahore Cantt
Tel +92 4 3668 0492, +92 4 3668 0118
sales@mcss.com.pk
www.mcss.com.pk

Petrogulf W.L.L
QA Doha
Tel +974 44350151
pgulf@qatar.net.qa

AUMA Saudi Arabia Support Office
SA 31952 Al Khobar
Tel +966 5 5359 6025
Vincid.Fernandes@auma.com

AUMA ACTUATORS (Singapore) Pte Ltd.
SG 589351 Singapore
Tel +65 64818750
sales@auma.com.sg
www.auma.com.sg

NETWORK ENGINEERING
SY Homs
Tel +963 31 231 571
eyad3@scss-net.org

Sunny Valves and Intertrade Corp. Ltd.
TH 10120 Yannawa, Bangkok
Tel +66 2 2400656
mainbox@sunnyvalves.co.th
www.sunnyvalves.co.th

Top Advance Enterprises Ltd.
TW 10340 Zhongli, Taoyuan (235)
Tel +886 2 2225 1718
support@auma-taiwan.com.tw
www.auma-taiwan.com.tw

AUMA Vietnam Hanoi RO
VN Hanoi
Tel +84 4 37822115
chiennguyen@auma.com.vn

Australia

BARRON GJM Pty. Ltd.
AU NSW 1570 Artarmon
Tel +61 2 8437 4300
info@barron.com.au
www.barron.com.au