Multi-turn actuators
SA 07.2 – SA 16.2/SAR 07.2 – SAR 16.2
Control unit: electromechanic
with actuator controls
AUMATIC AC 01.2 Intrusive

Control
→ Parallel
Profibus DP
Modbus
Foundation Fieldbus
Read operation instructions first.
- Observe safety instructions.
- These operation instructions are part of the product.
- Preserve operation instructions during product life.
- Pass on instructions to any subsequent user or owner of the product.

Purpose of the document:
This document contains information for installation, commissioning, operation and maintenance staff. It is intended to support device installation and commissioning.

Reference documents:
- Manual (Operation and setting) AUMATIC AC 01.2 Parallel

Reference documents can be downloaded from the Internet (www.auma.com) or ordered directly from AUMA (refer to <Addresses>.

Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Safety instructions</td>
<td>5</td>
</tr>
<tr>
<td>1.1. Basic information on safety</td>
<td>5</td>
</tr>
<tr>
<td>1.2. Range of application</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Applications in Ex zone 22 (option)</td>
<td>6</td>
</tr>
<tr>
<td>1.4. Warnings and notes</td>
<td>6</td>
</tr>
<tr>
<td>1.5. References and symbols</td>
<td>7</td>
</tr>
<tr>
<td>2. Identification</td>
<td>8</td>
</tr>
<tr>
<td>2.1. Name plate</td>
<td>8</td>
</tr>
<tr>
<td>2.2. Short description</td>
<td>9</td>
</tr>
<tr>
<td>3. Transport, storage and packaging</td>
<td>11</td>
</tr>
<tr>
<td>3.1. Transport</td>
<td>11</td>
</tr>
<tr>
<td>3.2. Storage</td>
<td>11</td>
</tr>
<tr>
<td>3.3. Packaging</td>
<td>11</td>
</tr>
<tr>
<td>4. Assembly</td>
<td>12</td>
</tr>
<tr>
<td>4.1. Mounting position</td>
<td>12</td>
</tr>
<tr>
<td>4.2. Handwheel fitting</td>
<td>12</td>
</tr>
<tr>
<td>4.3. Multi-turn actuator: mount to valve/gearbox</td>
<td>12</td>
</tr>
<tr>
<td>4.3.1 Output drive types B, B1 – B4 and E</td>
<td>12</td>
</tr>
<tr>
<td>4.3.1.1 Multi-turn actuator (with output drive types B1 – B4 or E): mount to valve/gearbox</td>
<td>13</td>
</tr>
<tr>
<td>4.3.2 Output drive type A</td>
<td>13</td>
</tr>
<tr>
<td>4.3.2.1 Stem nut: finish machining</td>
<td>14</td>
</tr>
<tr>
<td>4.3.2.2 Multi-turn actuator (with output drive type A): mount to valve</td>
<td>15</td>
</tr>
<tr>
<td>4.4. Accessories for assembly</td>
<td>16</td>
</tr>
<tr>
<td>4.4.1 Stem protection tube for rising valve stem</td>
<td>16</td>
</tr>
<tr>
<td>4.5. Mounting positions of local controls</td>
<td>16</td>
</tr>
<tr>
<td>4.5.1 Mounting positions: modify</td>
<td>17</td>
</tr>
<tr>
<td>5. Electrical connection</td>
<td>18</td>
</tr>
<tr>
<td>5.1. Basic information</td>
<td>18</td>
</tr>
<tr>
<td>5.2. Connection with AUMA plug/socket connector</td>
<td>19</td>
</tr>
<tr>
<td>5.2.1 Terminal compartment: open</td>
<td>20</td>
</tr>
<tr>
<td>5.2.2 Cable connection</td>
<td>20</td>
</tr>
<tr>
<td>5.2.3 Terminal compartment: close</td>
<td>22</td>
</tr>
</tbody>
</table>
5.3. Accessories for electrical connection
 5.3.1 Controls mounted to wall bracket
 5.3.2 Parking frame
 5.3.3 Protection cover
 5.3.4 Double sealed intermediate frame
 5.3.5 Earth connection, external

6. **Operation**
 6.1. Manual operation
 6.1.1 Manual operation: engage
 6.1.2 Manual operation: disengage
 6.2. Motor operation
 6.2.1 Local actuator operation
 6.2.2 Actuator operation from remote
 6.3. Menu navigation via push buttons (for settings and indications)
 6.3.1 Menu layout and navigation
 6.4. User level, password
 6.4.1 Password entry
 6.4.2 Password change
 6.5. Language in the display
 6.5.1 Change language

7. **Indications**
 7.1. Indications during commissioning
 7.2. Indications in the display
 7.2.1 Feedback indications from actuator and valve
 7.2.2 Status indications according to AUMA classification
 7.2.3 Status indications according to NAMUR recommendation
 7.3. Mechanical position indicator/running indication
 7.4. Indication lights

8. **Signals**
 8.1. Status signals via output contacts (digital outputs)
 8.1.1 Assignment of outputs
 8.1.2 Encoding of outputs
 8.2. Analogue signals

9. **Commissioning (basic settings)**
 9.1. Type of seating: set
 9.2. Switch compartment: open
 9.3. Torque switching: set
 9.4. Limit switching: set
 9.4.1 End position CLOSED (black section): set
 9.4.2 End position OPEN (white section): set
 9.5. Intermediate positions: set
 9.5.1 Running direction CLOSE (black section): set
 9.5.2 Running direction OPEN (white section): set
 9.6. Test run
 9.6.1 Direction of rotation: check
 9.6.2 Limit switching: check
 9.6.3 Reference operation position feedback: perform
 9.7. Potentiometer setting
 9.8. Electronic position transmitter RWG: set
1. Safety instructions

1.1 Basic information on safety

Standards/directives

AUMA products are designed and manufactured in compliance with recognised standards and directives. This is certified in a Declaration of Incorporation and an EC Declaration of Conformity.

The end user or the contractor must ensure that all legal requirements, directives, guidelines, national regulations and recommendations with respect to assembly, electrical connection, commissioning and operation are met at the place of installation.

Safety instructions/warnings

All personnel working with this device must be familiar with the safety and warning instructions in this manual and observe the instructions given. Safety instructions and warning signs on the device must be observed to avoid personal injury or property damage.

Qualification of staff

Assembly, electrical connection, commissioning, operation, and maintenance must be carried out exclusively by suitably qualified personnel having been authorised by the end user or contractor of the plant only.

Prior to working on this product, the staff must have thoroughly read and understood these instructions and, furthermore, know and observe officially recognised rules regarding occupational health and safety.

Commissioning

Prior to commissioning, it is important to check that all settings meet the requirements of the application. Incorrect settings might present a danger to the application, e.g. cause damage to the valve or the installation. The manufacturer will not be held liable for any consequential damage. Such risk lies entirely with the user.

Operation

Prerequisites for safe and smooth operation:

- Correct transport, proper storage, mounting and installation, as well as careful commissioning.
- Only operate the device if it is in perfect condition while observing these instructions.
- Immediately report any faults and damage and allow for corrective measures.
- Observe recognised rules for occupational health and safety.
- Observe the national regulations.
- During operation, the housing warms up and surface temperatures > 60 °C may occur. To prevent possible burns, we recommend checking the surface temperature using an appropriate thermometer and wearing protective gloves, if required, prior to working on the device.

Protective measures

The end user or the contractor are responsible for implementing required protective measures on site, such as enclosures, barriers, or personal protective equipment for the staff.

Maintenance

To ensure safe device operation, the maintenance instructions included in this manual must be observed.

Any device modification requires prior consent of the manufacturer.

1.2 Range of application

AUMA multi-turn actuators are designed for the operation of industrial valves, e.g. globe valves, gate valves, butterfly valves, and ball valves.

Other applications require explicit (written) confirmation by the manufacturer.

The following applications are not permitted, e.g.:

- Industrial trucks according to EN ISO 3691
- Lifting appliances according to EN 14502
- Passenger lifts according to DIN 15306 and 15309
- Service lifts according to EN 81-1/A1
• Escalators
• Continuous duty
• Buried service
• Permanent submersion (observe enclosure protection)
• Potentially explosive areas, with the exception of zone 22
• Radiation exposed areas in nuclear power plants

No liability can be assumed for inappropriate or unintended use.

Observance of these operation instructions is considered as part of the device's designated use.

Information

These operation instructions are only valid for the "clockwise closing" standard version, i.e. driven shaft turns clockwise to close the valve.

1.3 Applications in Ex zone 22 (option)

Actuators of the indicated series basically meet the requirements for applications in dust hazardous locations of ZONE 22 in compliance with the ATEX directive 94/9/EC.

The actuators are designed to meet enclosure protection IP 68 and fulfill the requirements of EN 50281-1-1:1998 section 6 - Electrical apparatus for use in presence of combustible dust, requirements for category 3 electrical equipment - protected by enclosures.

To comply with all requirements of EN 50281-1-1:1998, it is imperative that the following points are observed:

- In compliance with the ATEX directive 94/9/EC, the actuators must be equipped with an additional identification – II3D IP6X T150 °C.
- The maximum surface temperature of the actuators, based on an ambient temperature of +40 °C in accordance with EN 50281-1-1 section 10.4, is +150 °C. In accordance with section 10.4, an increased dust deposit on the equipment was not considered for the determination of the maximum surface temperature.
- The correct connection of the thermoswitches or the PTC thermistors as well as fulfilling the requirements of the duty type and the technical data are prerequisites for compliance with the maximum surface temperature of devices.
- The connection plug may only be plugged in or pulled out when device is disconnected from the mains.
- The cable glands used also have to meet the requirements of category II3 D and must at least comply with enclosure protection IP 67.
- The actuators must be connected by means of an external ground connection (accessory part) to the potential compensation or integrated into an earthed piping system.
- The threaded plug (part no. 511.0) or the stem protection tube with protective cap (part nos. 568.1 and 568.2) for sealing the hollow shaft must imperatively be mounted to guarantee tightness and therefore the combustible dust hazard protection.
- As a general rule, the requirements of EN 50281-1-1 must be respected in dust hazardous locations. During commissioning, service, and maintenance, special care as well as qualified and trained personnel are required for the safe operation of actuators.

1.4 Warnings and notes

The following warnings draw special attention to safety-relevant procedures in these operation instructions, each marked by the appropriate signal word (DANGER, WARNING, CAUTION, NOTICE).

⚠️ DANGER ⚠️

Indicates an imminently hazardous situation with a high level of risk. Failure to observe this warning could result in death or serious injury.
1.5 References and symbols

The following references and symbols are used in these instructions:

- **Information**

 The term **Information** preceding the text indicates important notes and information.

- **Symbol for CLOSED (valve closed)**

- **Symbol for OPEN (valve open)**

- **!**

 Important information before the next step. This symbol indicates what is required for the next step or what has to be prepared or observed.

- **M > Via the menu to parameter**

 Describes the path within the menu to the parameter. By using the push buttons of the local controls you may quickly find the desired parameter in the display.

- **< > Reference to other sections**

 Terms in brackets shown above refer to other sections of the document which provide further information on this topic. These terms are either listed in the index, a heading or in the table of contents and may quickly be found.
2. **Identification**

2.1 **Name plate**

Each device component (actuator, controls, motor) is equipped with a name plate.

Figure 1: Arrangement of name plates

![Name plate diagram]

- [1] Actuator name plate
- [2] Controls name plate
- [3] Motor name plate
- [4] Additional plate, e.g. KKS plate (Power Plant Classification System)

Description of actuator name plate

Figure 2: Actuator name plate (example)

- [1] Name of manufacturer
- [2] Address of manufacturer
- [3] **Type designation** (see explanation below)
- [4] **Commission number** (see explanation below)
- [5] **Actuator series number** (see explanation below)
- [6] Output speed
- [7] Torque range in direction CLOSE
- [8] Torque range in direction OPEN
- [11] Permissible ambient temperature
- [12] Can be assigned as an option upon customer request
- [13] Can be assigned as an option upon customer request
Type designation

Figure 3: Type designation (example)

SA 07.2 - FZ

1. Type and size of actuator
2. Flange size

Type and size

These instructions apply to the following devices types and sizes:

- Multi-turn actuators for open-close duty: SA 07.2, 07.6, 10.2, 14.2, 14.6, 16.2
- Multi-turn actuators for modulating duty: SAR 07.2, 07.6, 10.2, 14.2, 14.6, 16.2

Commission number

An order-relevant commission number (order number) is assigned to each device. This commission number can be used to directly download the wiring diagram (in German and English language), inspection records and further information regarding the device from the Internet: http://www.auma.com. For some details, the customer number might be required.

Actuator series number

Table 1: Description of series number (with example)

<table>
<thead>
<tr>
<th>05</th>
<th>12</th>
<th>M D 12345</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st + 2nd position: Assembly in week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>In our example: Week 05</td>
<td></td>
</tr>
<tr>
<td>3rd + 4th position: Year of production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>In our example: Year of production: 2012</td>
<td></td>
</tr>
</tbody>
</table>

Description of controls name plate

Figure 4: Controls name plate

[1] Type designation
[2] Commission number
[4] Control

Type designation

AC 01.2 = Actuator controls AUMATIC

Wiring diagram

The 9th position in the TPA wiring diagram: Position transmitter (actuator)

Control unit: electromechanical:

- 0 = without position transmitter
- A, B, J, K, L, N, R, T = potentiometer
- C, D, E, G, H, M, P, S, U = RWG (electronic position transmitter)

Control

- **24 V DC** = Control via parallel interface at 24 V DC control voltage
- **115 V AC** = Control via parallel interface at 115 V AC control voltage
- **0/4 – 20 mA** = Control via parallel interface via analogue input 0/4 – 20 mA

2.2 Short description

Multi-turn actuator

Definition in compliance with EN ISO 5210:
A multi-turn actuator is an actuator which transmits to the valve a torque for at least one full revolution. It is capable of withstanding thrust.

AUMA multi-turn actuators are driven by an electric motor and are capable of withstanding thrust in combination with output drive type A. For manual operation, a handwheel is provided. Switching off in end positions may be either by limit or torque seating. Controls are required to operate or process the actuator signals.

Actuator controls

The AUMATIC actuator controls are used to operate AUMA actuators and are supplied ready for use. The controls may be mounted directly to the actuator or separately on a wall bracket.

The functions of the AUMATIC controls include standard valve control in OPEN-CLOSE duty, positioning, process control, logging of operating data right through to diagnostic functions.

Local controls/AUMA ToolSuite

Operation, setting, and display can be performed on site directly at the controls. When set to local control, it is possible to

- operate the actuator via the local controls (push buttons and display) and perform settings (contents of these instructions).
- read in or out data or modify and save settings via the AUMA ToolSuite software (option), using a computer (laptop or PC). The connection between computer and AUMATIC is wireless via Bluetooth interface (not included in these instructions).

Intrusive - Non-Intrusive

- Intrusive version (control unit: electromechanical):
 Limit and torque setting is performed via switches in the actuator.
- Non-Intrusive version (control unit: electronic):
 Limit and torque setting is performed via the controls, actuator and controls housings do not have to be opened. For this purpose, the actuator is equipped with an MWG (magnetic limit and torque transmitter), also supplying analogue torque feedback signals/torque indication and analogue position feedback signals/position indication.
3. Transport, storage and packaging

3.1 Transport

For transport to place of installation, use sturdy packaging.

Hovering load!

Risk of death or serious injury.

→ Do NOT stand below hovering load.
→ Attach ropes or hooks for the purpose of lifting by hoist only to housing and NOT to handwheel.
→ Actuators mounted on valves: Attach ropes or hooks for the purpose of lifting by hoist to valve and NOT to actuator.
→ Actuators mounted to gearboxes: Attach ropes or hooks for the purpose of lifting by hoist only to the gearbox using eyebolts and NOT to the actuator.
→ Actuators mounted to controls: Attach ropes or hooks for the purpose of lifting by hoist only to the actuator and NOT to the controls.

3.2 Storage

Danger of corrosion due to inappropriate storage!

→ Store in a well-ventilated, dry room.
→ Protect against floor dampness by storage on a shelf or on a wooden pallet.
→ Cover to protect against dust and dirt.
→ Apply suitable corrosion protection agent to uncoated surfaces.

Damage on display caused by temperatures below permissible level!

→ The AUMATIC actuator controls must NOT be stored below –30 °C.

Long-term storage

If the device must be stored for a long period (more than 6 months) the following points must be observed in addition:

1. Prior to storage:
 Protect uncoated surfaces, in particular the output drive parts and mounting surface, with long-term corrosion protection agent.
2. At an interval of approx. 6 months:
 Check for corrosion. If first signs of corrosion show, apply new corrosion protection.

3.3 Packaging

Our products are protected by special packaging for transport when leaving the factory. The packaging consists of environmentally friendly materials which can easily be separated and recycled. We use the following packaging materials: wood, cardboard, paper, and PE foil. For the disposal of the packaging material, we recommend recycling and collection centres.
4. **Assembly**

4.1 **Mounting position**

AUMA actuators and actuator controls can be operated without restriction in any mounting position.

4.2 **Handwheel fitting**

Information

For transport purposes, handwheels from a diameter of 400 mm are supplied separately.

Figure 5: Handwheel

![Handwheel diagram]

1. If required, fit spacer [1] onto input shaft [2].

4.3 **Multi-turn actuator: mount to valve/gearbox**

NOTICE

Danger of corrosion due to damage to paint finish and condensation!

→ Touch up damage to paint finish after work on the device.
→ After mounting, connect the device immediately to electrical mains to ensure that heater minimises condensation.

4.3.1 **Output drive types B, B1 – B4 and E**

Application

- For rotating, non-rising valve stem
- Not capable of withstanding thrust

Design

Output drive bore with keyway:

- Types B1 – B4 with bore according to ISO 5210
- Types B and E with bore according to DIN 3210
- Later change from B1 to B3, B4, or E is possible.
4.3.1.1 Multi-turn actuator (with output drive types B1 – B4 or E): mount to valve/gearbox

1. Check if mounting flanges fit together.
2. Check whether bore and keyway match the input shaft.
3. Apply a small quantity of grease to the input shaft.
4. Place multi-turn actuator.
 Information: Ensure that the spigot fits uniformly in the recess and that the mounting faces are in complete contact.
5. Fasten multi-turn actuator with screws according to table.
 Information: We recommend applying liquid thread sealing material to the screws to avoid contact corrosion.
6. Fasten screws crosswise to a torque according to table.

Table 2: Tightening torques for screws

<table>
<thead>
<tr>
<th>Screws</th>
<th>Tightening torque T_A [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M8</td>
<td>25</td>
</tr>
<tr>
<td>M10</td>
<td>51</td>
</tr>
<tr>
<td>M12</td>
<td>87</td>
</tr>
<tr>
<td>M16</td>
<td>214</td>
</tr>
<tr>
<td>M20</td>
<td>431</td>
</tr>
</tbody>
</table>

4.3.2 Output drive type A

Application
- Output drive for rising, non-rotating valve stem
- Capable of withstanding thrust

Information
To adapt the actuators to output drive types A available on site with flanges F10 and F14 (year of manufacture: 2009 and earlier), an adapter is required. The adapter can be ordered from AUMA.
4.3.2.1 Stem nut: finish machining

This working step is only required if stem nut is supplied unbored or with pilot bore.

Information: When fixing in the chuck, make sure stem nut runs true!

Figure 7: Design of output drive type A

3. Remove bearing races [2.1] and bearing rims [2.2] from stem nut [1].
4. Drill and bore stem nut [1] and cut thread.
5. Clean the machined stem nut [1].
6. Apply sufficient Lithium soap EP multi-purpose grease to bearing rims [2.2] and bearing races [2.1], ensuring that all hollow spaces are filled with grease.
7. Place greased bearing rims [2.2] and bearing races [2.1] onto stem nut [1].
9. Screw in spigot ring [3] until it is firm against the shoulder.
4.3.2.2 Multi-turn actuator (with output drive type A): mount to valve

Figure 8: Assembly with output drive type A

1. If the output drive type A is already mounted to the multi-turn actuator: Loosen screws [3] and remove output drive type A [2].
2. Check if the flange of output drive type A matches the valve flange [4].
3. Apply a small quantity of grease to the valve stem [1].
4. Place output drive type A on valve stem and turn until it is flush on the valve flange.
5. Turn output drive type A until alignment of the fixing holes.
6. Screw in fastening screws [5], however do not completely tighten.
7. Fit multi-turn actuator on the valve stem so that the stem nut dogs engage into the output drive sleeve.
 ➞ The flanges are flush with each other if properly engaged.
8. Adjust multi-turn actuator until alignment of the fixing holes.
9. Fasten multi-turn actuator with screws [3].

Table 3: Tightening torques for screws

<table>
<thead>
<tr>
<th>Screws</th>
<th>Tightening torque T_A [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads</td>
<td>Strength class 8.8</td>
</tr>
<tr>
<td>M6</td>
<td>11</td>
</tr>
<tr>
<td>M8</td>
<td>25</td>
</tr>
<tr>
<td>M10</td>
<td>51</td>
</tr>
<tr>
<td>M12</td>
<td>87</td>
</tr>
<tr>
<td>M16</td>
<td>214</td>
</tr>
<tr>
<td>M20</td>
<td>431</td>
</tr>
</tbody>
</table>

11. Turn multi-turn actuator with handwheel in direction OPEN until valve flange and output drive A are firmly placed together.
12. Tighten fastening screws [5] between valve and output drive type A crosswise applying a torque according to table.
4.4 Accessories for assembly

4.4.1 Stem protection tube for rising valve stem

— Option —

Figure 9: Assembly of the stem protection tube

1. Seal thread with hemp, Teflon tape, or thread sealing material.
4. Check whether cap for stem protection tube [1] is available and in perfect condition.

4.5 Mounting positions of local controls

The mounting position of the local controls is selected according to the order. If, after mounting the actuator to the valve or the gearbox on site, the local controls are in an unfavourable position, the mounting position can be changed at a later date. Four mounting positions are possible.

Figure 10: Mounting positions A and B
4.5.1 Mounting positions: modify

Hazardous voltage!
Risk of electric shock.
→ Disconnect device from the mains before opening.

Electrostatic discharge ESD!
Risk of damage to electronic components.
→ Earth both operators and devices.

1. Loosen screws and remove the local controls.
2. Check whether O-ring is in good condition, correctly insert O-ring.
3. Turn local controls into new position and re-place.

Cable damage due to twisting or pinching!
Risk of functional failures.
→ Turn local controls by a maximum of 180°.
→ Carefully assemble local controls to avoid pinching the cables.

4. Fasten screws evenly crosswise.
5. Electrical connection

5.1 Basic information

Danger due to incorrect electrical connection

Failure to observe this warning can result in death, serious injury, or property damage.

→ The electrical connection must be carried out exclusively by suitably qualified personnel.

→ Prior to connection, observe basic information contained in this chapter.

→ After connection but prior to applying the voltage, observe the <Commissioning> and <Test run> chapters.

Wiring diagram/terminal plan

The pertaining wiring diagram/terminal plan (in German and English language) is attached to the device in a weather-proof bag, together with these operation instructions. It can also be obtained from AUMA (state commission no., refer to name plate) or downloaded directly from the Internet (www.auma.com).

Permissible networks (supply networks)

The controls (actuators) are suitable for use in TN and TT networks with directly earthed star point and a maximum voltage of 690 V AC. Use in IT networks is permitted while observing the respective <Protection on site> for maximum supply voltages of 600 V AC.

Protection on site

For short-circuit protection and for disconnecting the actuator from the mains, fuses and disconnect switches have to be provided by the customer.

The current values for respective sizing is derived from the current consumption of the motor (refer to electrical data sheet) plus the current consumption of the controls.

Table 4: Current consumption controls

<table>
<thead>
<tr>
<th>Mains voltage</th>
<th>Max. current consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible variation of the mains voltage</td>
<td>±10 %</td>
</tr>
<tr>
<td>100 to 120 V AC</td>
<td>750 mA</td>
</tr>
<tr>
<td>208 to 240 V AC</td>
<td>400 mA</td>
</tr>
<tr>
<td>380 to 500 V AC</td>
<td>250 mA</td>
</tr>
<tr>
<td>515 to 690 V AC</td>
<td>200 mA</td>
</tr>
</tbody>
</table>

Table 5: Maximum permissible protection

<table>
<thead>
<tr>
<th>Switchgear</th>
<th>Rated power</th>
<th>max. protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reversing contactor A1</td>
<td>up to 1.5 kW</td>
<td>16 A (gL/gG)</td>
</tr>
<tr>
<td>Reversing contactor A2</td>
<td>up to 7.5 kW</td>
<td>32 A (gL/gG)</td>
</tr>
<tr>
<td>Reversing contactor A3</td>
<td>up to 11 kW</td>
<td>63 A (gL/gG)</td>
</tr>
<tr>
<td>Thyristor</td>
<td>up to 1.5 kW</td>
<td>16 A (g/R) P_t<1,500A²s</td>
</tr>
<tr>
<td>Thyristor</td>
<td>up to 3 kW</td>
<td>32 A (g/R) P_t<1,500A²s</td>
</tr>
<tr>
<td>Thyristor</td>
<td>up to 5.5 kW</td>
<td>63 A (g/R) P_t<5,000A²s</td>
</tr>
</tbody>
</table>

If controls are mounted separately from actuator (controls on wall bracket): Consider length and cross section of connecting cable when defining the protection required.

Use appropriate insulation monitors when working in power installations, for example an insulation monitor measuring the pulse code.

Power supply for the controls (electronics)

In case of external supply of the controls (electronics): The external power supply must have a reinforced insulation against the mains voltage in accordance with IEC 61010-1 and may only be supplied by a circuit limited to 150 VA in accordance with IEC 61010-1.

Potential of customer connections

All input signals (control) must be supplied with the same potential.

All output signals (status signals) must be supplied with the same potential.
Safety standards
All externally connected devices shall comply with the relevant safety standards.

Cable installation in accordance with EMC
Signal and bus cables are susceptible to interference. Motor cables are interference sources.
- Lay cables being susceptible to interference or sources of interference at the highest possible distance from each other.
- The interference immunity of signal and bus cables increases if the cables are laid close to the earth potential.
- If possible, avoid laying long cables and make sure that they are installed in areas being subject to low interference.
- Avoid long parallel paths with cables being either susceptible to interference or interference sources.
- For the connection of remote position transmitters, screened cables must be used.

Type of current, mains voltage and mains frequency
Type of current, mains voltage and mains frequency must match the data on the motor name plate.

Figure 12: Motor name plate (example)

[1] Type of current
[3] Mains frequency (for 3-ph and 1-ph AC motors)

Connecting cables
- For device insulation, appropriate (voltage-proof) cables must be used. Specify cables for the highest occurring rated voltage.
- Use connecting cable with appropriate minimum rated temperature.
- For connecting cables exposed to UV radiation (outdoor installation), use UV resistant cables.

5.2 Connection with AUMA plug/socket connector

Cross sections AUMA plug/socket connector:
- Power terminals (U1, V1, W1, U2, V2, W2): max. 6 mm² flexible/10 mm² solid
- PE connection ❍: max. 6 mm² flexible/10 mm² solid
- Control contacts (1 to 50): max. 2.5 mm²
5.2.1 Terminal compartment: open

Figure 13: Connection AUMA plug/socket connector, version S

1. Loosen screws [2] and remove cover [1].
 ➡️ The enclosure protection IP... stated on the name plate is only ensured if suitable cable glands are used. Example: Name plate shows enclosure protection IP 68.
4. Seal unused cable entries [6] with suitable blanking plugs [7].
5. Insert the cables into the cable glands [8].

5.2.2 Cable connection

✔ Observe permissible cross sections.
1. Remove cable sheathing.
2. Strip wires.
3. For flexible cables: Use end sleeves according to DIN 46228.
4. Connect cables according to order-related wiring diagram.
WARNING

In case of a fault: Hazardous voltage while protective earth conductor is NOT connected!

Risk of electric shock.

→ Connect all protective earth conductors.

→ Connect PE connection to external protective earth conductor of connecting cables.

→ Start running the device only after having connected the protective earth conductor.

5. Tighten PE conductors firmly to PE connection using ring lugs (flexible cables) or loops (rigid cables).

Figure 15: PE connection

NOTICE

Danger of corrosion: Damage due to condensation!

→ After mounting, commission the device immediately to ensure that heater minimises condensation.

Information

Some actuators are equipped with an additional motor heater. The motor heater minimises condensation within the motor and improves the start-up behaviour for extremely low temperatures.
5.2.3 Terminal compartment: close

Figure 16: Example: Version S

- [1] Cover
- [2] Screws for cover
- [3] O-ring
- [4] Screws for socket carrier
- [5] Socket carrier
- [6] Cable entry
- [7] Blanking plug
- [8] Cable gland (not included in delivery)

WARNING

Short-circuit due to pinching of cables!
Risk of electric shock and functional failures.
→ Carefully fit socket carrier to avoid pinching the cables.

1. Insert the socket carrier [5] into the cover [1] and fasten with screws [4].
2. Clean sealing faces of cover [1] and housing.
3. Check whether O-ring [3] is in good condition, replace if damaged.
4. Apply a thin film of non-acidic grease (e.g. petroleum jelly) to the O-ring and insert it correctly.
6. Fasten cable glands [8] applying the specified torque to ensure the required enclosure protection.

5.3 Accessories for electrical connection

— Option —

5.3.1 Controls mounted to wall bracket

The wall bracket allows separate mounting of controls and actuator.

Application
- If the actuator cannot be accessed.
- If the actuator is subjected to high temperatures.
- In case of heavy vibration of the valve.
Design

Figure 17: Design principle with wall bracket

1. Wall bracket
2. Connecting cables
3. Electrical connection of wall bracket (XM)
4. Electrical connection of actuator (XA)
5. Electrical connection of controls (XK) – customer connector

Observe prior to connection

- Permissible length of connecting cables: max. 100 m.
- If the actuator is equipped with a position transmitter (RWG): Connecting cables must be available as shielded version.
- Versions with potentiometer in the actuator are not suitable.
- We recommend: AUMA cable set LSW1.
- If the AUMA cable set is not used: Use suitable flexible and screened connecting cables.
- When using connecting cables, e.g. of the heater or switch, requiring direct wiring from the actuator to the XK customer connector (XA-XM-XK, refer to wiring diagram), these connecting cables must be subject to an insulation test in compliance with EN 50178. Connecting cables of position transmitters (RWG, IWG, potentiometer) do not belong to this group. They may **not** be subject to an insulation test.

5.3.2 Parking frame

Application

Parking frame for safe storage of a disconnected plug.

For protection against touching the bare contacts and against environmental influences.

Figure 18: Parking frame

5.3.3 Protection cover

Protection cover for plug compartment when plug is removed.
The open terminal compartment can be closed using a protective cover (not illustrated).

5.3.4 Double sealed intermediate frame

When removing the electrical connection or due to leaky cable glands, ingress of dust and water into the housing may occur. This is prevented effectively by inserting the double sealed intermediate frame [2] between the plug/socket connector [1] and the housing of the device. The enclosure protection of the device (IP 68) will not be affected, even if the electrical connection [1] is removed.

Figure 19: Electrical connection with double sealed intermediate frame

![Figure 19: Electrical connection with double sealed intermediate frame](image)

[1] Electrical connection
[2] Double sealed intermediate frame

5.3.5 Earth connection, external

As an option, the housing is equipped with an external earth connection (U-bracket) to connect the device to the equipotential earth bonding.

Figure 20: Earth connection

![Figure 20: Earth connection](image)
6. Operation

Valve damage due to incorrect basic setting!

→ Prior to electrical operation of the actuator, the basic settings i.e. type of seating, torque and limit switching have to be completed.

6.1 Manual operation

For purposes of setting and commissioning, in case of motor failure or power failure, the actuator may be operated manually. Manual operation is engaged by an internal change-over mechanism.

6.1.1 Manual operation: engage

Damage at the motor coupling due to faulty operation!

→ Engage manual operation only during motor standstill.

1. Press push button.

2. Turn handwheel in desired direction.

→ To close the valve, turn handwheel clockwise:

Drive shaft (valve) turns clockwise in direction CLOSE.

6.1.2 Manual operation: disengage

Manual operation is automatically disengaged when motor is started again. The handwheel does not rotate during motor operation.

6.2 Motor operation

✔ Perform all commissioning settings and the test run prior to motor operation.

6.2.1 Local actuator operation

Local actuator operation is performed using the push buttons of the local controls of the AC.
6.2.2 Actuator operation from remote

Information For actuators equipped with a positioner, it is possible to select between open-close control (Remote OPEN-CLOSE) and setpoint control (remote SETPOINT). Selection is made via MODE input, e.g. based on a 24 V DC signal (refer to wiring diagram).
6.3 Menu navigation via push buttons (for settings and indications)

Menu navigation for display and setting is made via the push buttons [1 – 4] of the local controls.

Set the selector switch [5] to position 0 (OFF) when navigating through the menu.

The bottom row of the display [6] serves as navigation support and explains which push buttons [1 – 4] are used for menu navigation.

Figure 27:

![Diagram showing push button layout]

[1–4] Push buttons or navigation support
[5] Selector switch
[6] Display

Table 6: Important push button functions for menu navigation

<table>
<thead>
<tr>
<th>Push buttons</th>
<th>Navigation support on display</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] ▲</td>
<td>Up ▲</td>
<td>Change screen/selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change values</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter figures from 0 to 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Change values</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enter figures from 0 to 9</td>
</tr>
<tr>
<td>[3] ◄</td>
<td>Ok ◄</td>
<td>Confirm selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Save</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Edit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Details</td>
</tr>
<tr>
<td>[4] C</td>
<td>Setup</td>
<td>Enter Main menu</td>
</tr>
<tr>
<td></td>
<td>Esc</td>
<td>Cancel process</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Return to previous display</td>
</tr>
</tbody>
</table>

Backlight
- The display is illuminated in white during normal operation. The backlight turns to red under fault conditions.
- The screen illumination is brighter when operating a push button. If no push button is operated for 60 seconds, the display will become dim again.

6.3.1 Menu layout and navigation

Groups

The indications on the display are divided into 3 groups:
Figure 28: Groups

[1] Startup menu
[2] Status menu
[3] Main menu

ID
Status menu and main menu are marked with an ID.

Figure 29: Marking with ID

S ID starts with S = status menu
M ID starts with M = main menu

Group selection
It is possible to select between status menu S and main menu M:
For this, set selector switch to 0 (OFF), hold down push button C for approx. 2 seconds until a screen containing the ID $M...$ appears.

Figure 30: Select menu groups

You return to the status menu if:
- the push buttons on the local controls have not been operated within 10 minutes
- or by briefly pressing C

Direct display via ID
When entering the ID within the main menu, screens can be displayed directly (without clicking through).

Figure 31: Direct display (example)

Display indicates in the bottom row: Go to
1. Press push button \uparrow Go to.
 Display indicates: Go to menu $M0000$
2. Use push buttons \uparrow Up \downarrow Down to select figures 0 to 9.
3. Press push button \leftrightarrow Ok to confirm first digit.
4. Repeat steps 2 and 3 for all further digits.
5. To cancel the process: Press C Esc.

6.4 User level, password

User level
The user level defines which menu items or parameters can be displayed or modified by the active user.

There are 6 different user levels. The user level is indicated in the top row:
Password

A password must be entered to allow parameter modification. The display indicates: **Password 0***

A specific password is assigned to each user level and permits different actions.

Table 7: User levels and authorisations

<table>
<thead>
<tr>
<th>Designation (user level)</th>
<th>Authorisation/password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observer (1)</td>
<td>Verify settings</td>
</tr>
<tr>
<td></td>
<td>No password required</td>
</tr>
<tr>
<td>Operator (2)</td>
<td>Change settings</td>
</tr>
<tr>
<td></td>
<td>Default factory password: 0000</td>
</tr>
<tr>
<td>Maintenance (3)</td>
<td>Reserved for future extensions</td>
</tr>
<tr>
<td>Specialist (4)</td>
<td>Change device configuration</td>
</tr>
<tr>
<td></td>
<td>e.g. type of seating, assignment of output contacts</td>
</tr>
<tr>
<td></td>
<td>Default factory password: 0000</td>
</tr>
<tr>
<td>Service (5)</td>
<td>Service staff</td>
</tr>
<tr>
<td></td>
<td>Change configuration settings</td>
</tr>
<tr>
<td>AUMA (6)</td>
<td>AUMA administrator</td>
</tr>
</tbody>
</table>

6.4.1 Password entry

Display indicates: **Password 0***

1. Select desired menu and hold down push button for approx. 3 seconds.

2. Press Up to select a higher user level and press Ok to confirm.

3. Use push buttons Up, Down to select figures 0 to 9.

4. Confirm first digit of password via push button Ok.

5. Repeat steps 1 and 2 for all further digits.

Having confirmed the last digit with Ok, access to all parameters within one user level is possible if the password entry is correct.

6.4.2 Password change

Only the passwords of same or lower user level may be changed.

Example: The user is signed in as Specialist (4). This authorises him or her to modify the passwords between user levels (1) to (4).

Menu point Service functions M0222 is only visible if user level has been set to Specialist (4) or higher.

Select main menu

1. Set selector switch to position 0 (OFF).

2. Press push button C Setup and hold it down for approx. 3 seconds.

Display goes to main menu and indicates: Display...
Change passwords

3. Select parameter Change passwords either:
 - click via the menu M ▶ to parameter, or
 - via direct display: press ▲ and enter ID M0229
 - Display indicates: ▶ Change passwords
 - The user level is indicated in the top row (1 – 6), e.g.:

 ![Image]

 - For user level 1 (view only), passwords cannot be changed. To change passwords, you must change to a higher user level. For this, enter a password via a parameter.

4. For a user level between 2 and 6: Press push button ◀ Ok.
 - The display indicates the highest user level, e.g.: For user

5. Select user level via push buttons ▲ ▼ Up ▼ Down ▼ and confirm with ◀ Ok.
 - Display indicates: ▶ Change passwords Password 0***

6. Enter current password (→ enter password).
 - Display indicates: ▶ Change passwords Password (new) 0***

7. Enter new password (→ enter password).
 - Display indicates: ▶ Change passwords For user 4 (example)

8. Select next user level via push buttons ▲ ▼ Up ▼ Down ▼ or cancel the process via Esc.

6.5 Language in the display

The AUMATIC display is multilingual.

6.5.1 Change language

1. Set selector switch to position 0 (OFF).

2. Press push button C Setup and hold it down for approx. 3 seconds.
 - Display goes to main menu and indicates: ▶ Display...

3. Press ◀ Ok.
 - Display indicates: ▶ Language

4. Press ◀ Ok.
 - Display indicates the selected language, e.g.: ▶ Deutsch

5. The bottom row of the display indicates:
 - Save → continue with step 10
 - Edit → continue with step 6

 - Display indicates: ▶ Observer (1)

7. Select user level via ▲ ▼ Up ▼ Down ▼ resulting in the following significations:
 - black triangle: ▲ = current setting
 - white triangle: ▼ = selection (not saved yet)

8. Press ◀ Ok.
 - Display indicates: Password 0***
9. Enter password (↑ enter password).
 ➤ Display indicates: ↑ Language and Save (bottom row)

Language selection

10. Select new language via ▲ Up ▼ Down resulting in the following significations:
 → black triangle: ● = current setting
 → white triangle: ▷ = selection (not saved yet)

11. Confirm selection via ◄ Save.
 ➤ The display changes to the new language. The new language selection is saved.
7. Indications

7.1 Indications during commissioning

LED test
When switching on the power supply, all LEDs on the local controls illuminate for approx. 1 second. This optical feedback indicates that the voltage supply is connected to the controls and all LEDs are operable.

Figure 36: LED test

Language selection
During the self-test, the language selection can be activated so that the selected language is immediately indicated in the display. For this, set selector switch [5] to position 0 (OFF).

Activate language selection:
1. Display indicates in the bottom row: Language selection menu? 'Reset'
2. Press push button **RESET** and hold it down until the following text is displayed in the bottom line: **Language menu loading, please wait**.

Figure 37: Self-test

Startup menu
The current firmware version is displayed during the startup procedure:

Figure 38: Startup menu with firmware version: 04.00.00–xxxx

If the language selection feature has been activated during the self-test, the menu for selecting the display language will now be indicated. For further information on language setting, please refer to chapter <Language in the display>.

Figure 39: Language selection

If no entry is made over a longer period of time (approx. 1 minute), the display automatically returns to the first status indication.

7.2 Indications in the display

Status bar
The status bar (first row in the display) indicates the operation mode [1], the presence of an error [2] and the ID number [3] of the current display indication.
Navigation support

If further details or information are available with reference to the display, the following indications Details or More appear in the navigation support (bottom display row). Then, further information can be displayed via the push button.

The navigation support (bottom row) is faded out after approx. 3 seconds. Press any push button (selector switch in position 0 (OFF)) to fade in the navigation support.

7.2.1 Feedback indications from actuator and valve

Display indications depend on the actuator version.

Valve position (S0001)

This indication is only available if a position transmitter (potentiometer, RWG or MWG) is installed in the actuator.

- S0001 on the display indicates the valve position in % of the travel.
- The bargraph display appears after approx. 3 seconds.
- When issuing an operation command, an arrow indicates the direction (OPEN/CLOSE).

Reaching the preset end positions is additionally indicated via symbols (CLOSED) and (OPEN).

0% Actuator is in end position CLOSED
100% Actuator is in end position OPEN
Torque (S0002)
The indication is only available if the actuator is equipped with an MWG (magnetic limit and torque transmitter).

- **S0002** on the display indicates the torque applied at the actuator output.
- The bargraph display appears after approx. 3 seconds.

Figure 44: Torque

Select unit
The push button allows to select the unit displayed (percent %, Newton metre Nm or pounds per foot Lbs/ft).

Figure 45: Units of torque

Display in percent
100 % indication equals the max. torque indicated on the name plate of the actuator.

Example: SA 07.5 with 20 – 60 Nm.
- 100 % corresponds to 60 Nm of nominal torque.
- 50 % corresponds to 30 Nm of nominal torque.

Operation commands (S0003)
The display S0003 indicates:
- active operation commands, like e.g.: Operation in direction CLOSE or in direction OPEN
- the actual value E2 as bargraph indication and as value between 0 and 100 %.
- for setpoint control (positioner): setpoint E1
- for stepping mode or for intermediate positions with operation profile: pivot points and operation behaviour of pivot points

The navigation support (bottom row) is faded out after approx. 3 seconds and the axis/axes for pivot point display are shown.

OPEN - CLOSE control
Active operation commands (OPEN, CLOSE, ...) are shown above the bargraph display. The figure below shows the operation command in direction CLOSE.

Figure 46: Display for OPEN - CLOSE control
Setpoint control If the positioner is enabled and activated, the bargraph indication for E1 (position setpoint) is displayed.

The direction of the operation command is displayed by an arrow above the bargraph indication. The figure below shows the operation command in direction CLOSE.

Figure 47: Display for setpoint control (positioner)

Pivot point axis The pivot points and their operation behaviour (operation profile) are shown on the pivot point axis by means of symbols.

The symbols are only displayed if at least one of the following functions is activated:

- Operation profile M0294
- Timer CLOSE M0156
- Timer OPEN M0206

Figure 48: Examples: on the left pivot points (intermediate positions); on the right stepping mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Pivot point (intermediate position) with operation profile</th>
<th>Stepping mode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pivot point without reaction</td>
<td>End of stepping mode</td>
</tr>
<tr>
<td>▼</td>
<td>Stop during operation in direction CLOSE</td>
<td>Start of stepping mode in direction CLOSE</td>
</tr>
<tr>
<td>▴</td>
<td>Stop during operation in direction OPEN</td>
<td>Start of stepping mode in direction OPEN</td>
</tr>
<tr>
<td>◆</td>
<td>Stop during operation in directions OPEN and CLOSE</td>
<td>–</td>
</tr>
<tr>
<td>◁</td>
<td>Pause for operation in direction CLOSE</td>
<td>–</td>
</tr>
<tr>
<td>◀</td>
<td>Pause for operation in direction OPEN</td>
<td>–</td>
</tr>
<tr>
<td>◇</td>
<td>Pause for operation in directions OPEN and CLOSE</td>
<td>–</td>
</tr>
</tbody>
</table>

Multiport valve positions (S0017)

In case of active multiport valve function, the display S0017 indicates a second bargraph display with set positions (valve connections) above the actual position value E2. Positions (P1, P2, ...) are displayed with a black triangle ▼. Push buttons ▲▼ are used to select positions. Both positions and the actual position value E2 are displayed in degrees.
7.2.2 Status indications according to AUMA classification

These indications are available, if the parameter Diagnostic classific. M0539 is set to AUMA.

Warnings (S0005)

If a warning has occurred, the display shows S0005:
- the number of warnings occurred
- a blinking question mark after approx. 3 seconds

Not ready REMOTE (S0006)

The S0006 display shows indications of the Not ready REMOTE group.

If such an indication has occurred, the display shows S0006:
- the number of indications occurred
- a blinking crossbar after approx. 3 seconds

Fault (S0007)

If a fault has occurred, the display shows S0007:
- the number of faults occurred
- a blinking exclamation mark after approx. 3 seconds
7.2.3 Status indications according to NAMUR recommendation

These indications are available, if the parameter Diagnostic classification M0539 is set to NAMUR.

Out of Specification (S0008)

The S0008 indication shows out of specification indications according to NAMUR recommendation NE 107.

If such an indication has occurred, the display shows S0008:

- the number of indications occurred
- a blinking triangle with question mark after approx. 3 seconds

Function check (S0009)

The S0009 indication shows function check indications according to NAMUR recommendation NE 107.

If an indication has occurred via the function check, the display shows S0009:

- the number of indications occurred
- a blinking triangle with a spanner after approx. 3 seconds

Maintenance required (S0010)

The S0010 indication shows maintenance indications according to NAMUR recommendation NE 107.

If such an indication has occurred, the display shows S0010:

- the number of indications occurred
- a blinking square with an oil can after approx. 3 seconds
Failure (S0011)

The S0011 indication shows the causes of the failure indication according to NAMUR recommendation NE 107.

If such an indication has occurred, the display shows S0011:
- the number of indications occurred
- a blinking circle with a cross after approx. 3 seconds

7.3 Mechanical position indicator/running indication

Option

Mechanical position indicator:
- Continuously indicates the valve position
 (For complete travel from OPEN to CLOSED or vice versa, the indicator disc [2] rotates by approximately 180° to 230°.)
- Indicates whether the actuator is running (running indication)
- Indicates that the end positions are reached (via indicator mark [3])
7.4 Indication lights

Figure 58: Arrangement and signification of indication lights

<table>
<thead>
<tr>
<th></th>
<th>Marking with symbols (standard)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>End position CLOSED reached (blinking: for operation in direction CLOSE)</td>
</tr>
<tr>
<td>2</td>
<td>Torque fault CLOSE</td>
</tr>
<tr>
<td>3</td>
<td>Motor protection tripped</td>
</tr>
<tr>
<td>4</td>
<td>Torque fault OPEN</td>
</tr>
<tr>
<td>5</td>
<td>End position OPEN reached (blinking: for operation in direction OPEN)</td>
</tr>
<tr>
<td>6</td>
<td>Bluetooth connection</td>
</tr>
</tbody>
</table>

Modify indication light assignment (indications)

Different indications can be assigned to LEDs 1 – 5.

<table>
<thead>
<tr>
<th>Device configuration</th>
<th>M0053</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local controls</td>
<td>M0159</td>
</tr>
<tr>
<td>Indication light 1 (left)</td>
<td>M0093</td>
</tr>
<tr>
<td>Indication light 2</td>
<td>M0094</td>
</tr>
<tr>
<td>Indication light 3</td>
<td>M0095</td>
</tr>
<tr>
<td>Indication light 4</td>
<td>M0096</td>
</tr>
<tr>
<td>Indication light 5 (right)</td>
<td>M0097</td>
</tr>
<tr>
<td>Signal interm. pos.</td>
<td>M0167</td>
</tr>
</tbody>
</table>

Default values (Europe):

Indication light 1 (left)	End p. CLOSED, blink
Indication light 2	Torque fault CLOSE
Indication light 3	Thermal fault
Indication light 4	Torque fault OPEN
Indication light 5 (right)	End p. OPEN, blink
Signal interm. pos.	OPEN/CLOSED = Off

Further setting values:

Refer to Manual (Operation and setting).
8. Signals

8.1 Status signals via output contacts (digital outputs)

Characteristics

Output contacts are used to send status signals (e.g. reaching the end positions, selector switch position, faults...) as binary signals to the control room. Status signals only have two states: active or inactive. Active means that the conditions for the signal are fulfilled.

8.1.1 Assignment of outputs

The output contacts (outputs DOUT 1 – 12) can be assigned to various signals.

Required user level: Specialist (4) or higher.

- Device configuration M0053
 - I/O interface M0139
 - Digital outputs M0110
 - Signal DOUT1 M0109

Default values:

- Signal DOUT 1 = Fault
- Signal DOUT 2 = End position CLOSED
- Signal DOUT 3 = End position OPEN
- Signal DOUT 4 = Selector sw. REMOTE
- Signal DOUT 5 = Torque fault CLOSE
- Signal DOUT 6 = Torque fault OPEN
- Signal DOUT 7 = End position CLOSED
- Signal DOUT 8 = End position OPEN
- Signal DOUT 9 = Selector sw. REMOTE
- Signal DOUT 10 = Torque fault CLOSE
- Signal DOUT 11 = Torque fault OPEN
- Signal DOUT 12 = Fault

8.1.2 Encoding of outputs

The output signals DOUT 1 – 12 can be set either to high active or low active.

- High active = output contact closed = signal active
- Low active = output contact open = signal active

Required user level: Specialist (4) or higher.

- Device configuration M0053
 - I/O interface M0139
 - Digital outputs M0110
 - Coding DOUT1 M0102

Default values for DOUT 1 – 12: High active

8.2 Analogue signals

— (Option) —

If the actuator is equipped with a position transmitter (potentiometer or MWG), an analogue feedback signal is available.

Valve position

Signal: E2 = 0/4 – 20 mA (galvanically isolated)

Designation in the wiring diagram:

- ANOUT1 (position)
- ANOUT2 (position)

For further information on this topic, please refer to Manual (Operation and setting).
9. Commissioning (basic settings)

1. Set selector switch to position 0 (OFF).

 ![Selector Switch]

 Information: The selector switch is not a mains switch. When positioned to 0 (OFF), the actuator cannot be operated. The controls' power supply is maintained.

2. Switch on the power supply.

 Information: Please consider the heat-up time for ambient temperatures below –20 °C.

3. Perform basic settings.

 9.1 Type of seating: set

 NOTICE

 Valve damage due to incorrect setting!

 → The type of seating must suit the valve.

 → Only change the setting with prior consent of the valve manufacturer.

<table>
<thead>
<tr>
<th>M ▶</th>
<th>Customer settings</th>
<th>M0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶</td>
<td>Type of seating</td>
<td>M0012</td>
</tr>
<tr>
<td></td>
<td>End position</td>
<td>CLOSED M0086</td>
</tr>
<tr>
<td></td>
<td>End position</td>
<td>OPEN M0087</td>
</tr>
</tbody>
</table>

 Default value: Limit

 Setting values:

 - **Limit**: Seating in end positions via limit switching.
 - **Torque**: Seating in end positions via torque switching.

 Select main menu

 1. Set selector switch to position 0 (OFF).

 ![Selector Switch]

 2. Press push button C Setup and hold it down for approx. 3 seconds.

 ➤ Display goes to main menu and indicates: ▶ Display...

 Select parameter

 3. Select parameter either:

 → click via the menu M ▶ to parameter, or

 → via direct display: press ▲ and enter ID M0086 or M0087

 ➤ Display indicates: End position CLOSED

 CLOSE or OPEN

 4. Use ▲ ▼ Up ▼ Down ▼ to select:

 → ▶ End position CLOSED

 → ▶ End position OPEN

 ➤ The black triangle ▶ indicates the current selection.

 5. Press ◀ Ok.

 ➤ Display indicates the current setting: Limit or Torque

 ➤ The bottom row of the display indicates either:

 - **Edit** → continue with step 6
 - **Save** → continue with step 10
 ➯ Display indicates: ▶ Specialist (4)

Log on user

7. Use ▲▼ Up ▼ Down ▼ to select user:
 Information: Required user level: Specialist (4) or higher
 ➯ The symbols have the following meaning:
 - black triangle: ▶ = current setting
 - white triangle: ▼ = selection (not saved yet)

8. Press ➯ Ok.
 ➯ Display indicates: Password 0***

9. Enter password (→ enter password).
 ➯ The screen indicates the pre-set type of seating (▼ Limit or ▶ Torque) by means of a black triangle ▶.

Change settings

10. Select new setting ▲▼ Up ▼ Down ▼ resulting in the following significations:
 ➯ The symbols have the following meaning:
 - black triangle: ▶ = current setting
 - white triangle: ▼ = selection (not saved yet)

11. Confirm selection via ➯ Save.
 ➯ The setting for the type of seating is complete.

9.2 Switch compartment: open

The switch compartment must be opened to perform the following settings (options).

 Figure 61:
2. If indicator disc [3] is available:
 Remove indicator disc [3] using a spanner (as lever).
 Information: To avoid damage to paint finish, use spanner in combination with soft object, e.g. fabric.

 Figure 62:

9.3 **Torque switching: set**

Once the set torque is reached, the torque switches will be tripped (overload protection of the valve).

Information
The torque switches may also trip during manual operation.

NOTICE

Valve damage due to excessive tripping torque limit setting!

→ The tripping torque must suit the valve.
→ Only change the setting with the consent of the valve manufacturer.

Figure 63: Torque switching heads

[1] Torque switching head black in direction CLOSE
[2] Torque switching head white in direction OPEN
[3] Lock screws

1. Loosen both lock screws [3] at the indicator disc.
2. Turn torque dial [4] to set the required torque (1 da Nm = 10 Nm).
 Information: Maximum tightening torque: 0.3 – 0.4 Nm
 ➤ The torque switch setting is complete.

Example: The figure above shows the following settings:

- 3.5 da Nm = 35 Nm for direction CLOSE
- 4.5 da Nm = 45 Nm for direction OPEN

9.4 **Limit switching: set**

The limit switching records the travel. When reaching the preset position, switches are operated.
9.4.1 End position CLOSED (black section): set

1. Engage manual operation.
2. Turn handwheel clockwise until valve is closed.
3. Turn handwheel by approximately half a turn (overrun) in the opposite direction.
4. Press down and turn setting spindle [1] with screw driver in direction of the arrow and observe the pointer [2]: While a ratchet click is felt and heard, the pointer [2] moves 90° every time.
5. If the pointer [2] is 90° from mark [3]: Continue turning slowly.
7. The end position CLOSED setting is complete.
8. If you override the tripping point inadvertently (ratchet click is heard after the pointer has snapped): Continue turning the setting spindle in the same direction and repeat setting process.

9.4.2 End position OPEN (white section): set

1. Engage manual operation.
2. Turn handwheel counterclockwise until valve is open.
3. Turn handwheel by approximately half a turn (overrun) in the opposite direction.
4. Press down and turn setting spindle [4] with screw driver in direction of the arrow and observe the pointer [5]: While a ratchet click is felt and heard, the pointer [5] moves 90° every time.
5. If the pointer [5] is 90° from mark [6]: Continue turning slowly.
6. If the pointer [5] moves to mark [6]: Stop turning and release setting spindle.
7. The end position OPEN setting is complete.
8. If you override the tripping point inadvertently (ratchet click is heard after the pointer has snapped): Continue turning the setting spindle in the same direction and repeat setting process.
9.5 Intermediate positions: set

--- Option ---
Actuators equipped with DUO limit switching contain two intermediate position switches. One intermediate position may be set for each running direction.

Figure 65: Setting elements for limit switching

Black section:
[1] Setting spindle: Running direction CLOSE
[2] Pointer: Running direction CLOSE

White section:

Information After 177 turns (control unit for 1 – 500 turns/stroke) or 1,769 turns (control unit for 1 – 5,000 turns/stroke), the intermediate switches release the contact.

9.5.1 Running direction CLOSE (black section): set

1. Move valve in direction CLOSE to desired intermediate position.
2. If you override the tripping point inadvertently: Turn valve in opposite direction and approach intermediate position again in direction CLOSE.
 Information: Always approach the intermediate position in the same direction as in later electrical operation.
3. Press down and turn setting spindle [1] with screwdriver in direction of the arrow and observe the pointer [2]; While a ratchet click is felt and heard, the pointer [2] moves 90° every time.
4. If the pointer [2] is 90° from mark [3]: Continue turning slowly.
5. If the pointer [2] moves to mark [3]: Stop turning and release setting spindle.
 ➤ The intermediate position setting in running direction CLOSE is complete.
6. If you override the tripping point inadvertently (ratchet click is heard after the pointer has snapped): Continue turning the setting spindle in the same direction and repeat setting process.

9.5.2 Running direction OPEN (white section): set

1. Move valve in direction OPEN to desired intermediate position.
2. If you override the tripping point inadvertently: Move valve in opposite direction and approach intermediate position again in direction OPEN (always approach the intermediate position in the same direction as in later electrical operation).
3. **Press down** and turn setting spindle [4] with screw driver in direction of the arrow and observe the pointer [5]: While a ratchet click is felt and heard, the pointer [5] moves 90° every time.

4. If the pointer [5] is 90° from mark [6]: Continue turning slowly.

5. If the pointer [5] moves to mark [6]: Stop turning and release setting spindle.
 ➤ The intermediate position setting in running direction OPEN is complete.

6. If you override the tripping point inadvertently (ratchet click is heard after the pointer has snapped): Continue turning the setting spindle in the same direction and repeat setting process.

9.6 Test run

Perform test run only once all settings previously described have been performed.

9.6.1 Direction of rotation: check

1. Move actuator manually to intermediate position or to sufficient distance from end position.
2. Set selector switch to position **Local control** (LOCAL).

3. Switch on actuator in running direction CLOSE and observe the direction of rotation:
 - with indicator disc: step 4
 - without indicator disc: step 5 (hollow shaft)
 ➤ Switch off before reaching the end position.

4. With indicator disc:
 ➤ Observe direction of rotation.
 ➤ The direction of rotation is correct, if **actuator runs in direction CLOSE** and **indicator disc turns counterclockwise**.
5. Without the indicator disc:
 ➤ The direction of rotation is correct, if **actuator runs in direction CLOSE** and hollow shaft or stem **turn clockwise**.

 ![Figure 68: Hollow shaft/stem](image)

 - [1] Threaded plug
 - [2] Seal
 - [3] Hollow shaft
 - [4] Cap for stem protection tube
 - [5] Stem
 - [6] Stem protection tube

9.6.2 Limit switching: check

1. Set selector switch to position **Local control** (LOCAL).

 ![Selector switch](image)

2. Operate actuator using push buttons OPEN - STOP - CLOSE.
 ➤ The limit switching is set correctly if (default indication):
 - the yellow indication light/LED1 is illuminated in end position CLOSED
 - the green indication light/LED5 is illuminated in end position OPEN
 - the indication lights go out after travelling into opposite direction.
 ➤ The limit switching is set incorrectly if:
 - the actuator comes to a standstill before reaching the end position
 - one of the red indication lights/LEDs is illuminated (torque fault)
 - the status indication S0007 in the display signals a fault.

3. If the end position setting is incorrect: Reset limit switching.
4. If the end position setting is correct and no options (e.g. potentiometer, position transmitter) are available: Close switch compartment.

9.6.3 Reference operation position feedback: perform

For actuators with position feedback (RWG, potentiometer), a reference operation has to be performed once the limit switching setting was changed to ensure that the position feedback (0/4 – 20 mA) supplies correct values:
→ Operate actuator electrically (via the push buttons OPEN and CLOSE of the local controls) once to end position OPEN and once to end position CLOSED.

9.7 Potentiometer setting

— **Option** —

The potentiometer as travel sensor records the valve position.

Information

Due to the ratio of the reduction gearing the complete resistance range/stroke is not always passed. Therefore, external adjustment (setting potentiometer) must be provided.

Figure 70: View of control unit

[1] Potentiometer

1. Move valve to end position CLOSED.
 - End position CLOSED corresponds to 0 %
 - End position OPEN corresponds to 100 %
4. Perform fine-tuning of the zero point at external setting potentiometer (for remote indication).

9.8 Electronic position transmitter RWG: set

— **Option** —

The electronic position transmitter RWG records the valve position. On the basis of the actual position value measured by the potentiometer (travel sensor), it generates a current signal between 0 – 20 mA or 4 – 20 mA.

Table 9: Technical data RWG 4020

<table>
<thead>
<tr>
<th>Wiring</th>
<th>3- or 4-wire system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal plan</td>
<td>TPA</td>
</tr>
<tr>
<td>Output current</td>
<td>I_A</td>
</tr>
<tr>
<td>Power supply</td>
<td>U_V</td>
</tr>
<tr>
<td>Max. current consump-</td>
<td>I</td>
</tr>
<tr>
<td>Max. load</td>
<td>R_B</td>
</tr>
</tbody>
</table>

9th position = E or H
0 – 20 mA, 4 – 20 mA
24 V DC, ±15 % smoothed
24 mA at 20 mA output current
600 Ω
1. Connect voltage to electronic position transmitter.
2. Move valve to end position CLOSED.
3. Connect ammeter for 0 – 20 mA to measuring points [4 and 5].
7. Turn potentiometer [2] in opposite direction until the following value is reached:
 - for 0 – 20 mA approx. 0.1 mA
 - for 4 – 20 mA approx. 4.1 mA
 ➤ This ensures that the signal remains above the dead and live zero point.
8. Move valve to end position OPEN.
9. Set potentiometer [3] to end value 20 mA.
10. Approach end position CLOSED again and check minimum value (0.1 mA or 4.1 mA). If necessary, correct the setting.

Information If the maximum value cannot be reached, the selection of the reduction gearing must be checked. (The max. possible turns/stroke are indicated on the order-related technical data sheet for the actuator.)

9.9 Mechanical position indicator: set

--- Option ---

1. Place indicator disc on shaft.
2. Move valve to end position CLOSED.
3. Turn lower indicator disc until symbol ▲ (CLOSED) is in alignment with the mark ▲ on the cover.

4. Move actuator to end position OPEN.
5. Hold lower indicator disc in position and turn upper disc with symbol (OPEN) until it is in alignment with the mark ▲ on the cover.

6. Move valve to end position CLOSED again.
7. Check settings:
 If the symbol (CLOSED) is no longer in alignment with mark ▲ on the cover:
 7.1 Repeat setting procedure.
 7.2 Check whether the appropriate reduction gearing has been selected, if required.

9.10 Switch compartment: close

NOTICE

Danger of corrosion due to damage to paint finish!
→ Touch up damage to paint finish after work on the device.

1. Clean sealing faces of housing and cover.
2. Check whether O-ring [3] is in good condition, replace if damaged.
3. Apply a thin film of non-acidic grease (e.g. petroleum jelly) to the O-ring and insert it correctly.

10. Corrective action

10.1 Faults during commissioning

Table 10: Faults during commissioning

<table>
<thead>
<tr>
<th>Fault description</th>
<th>Possible causes</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical position indicator cannot be set.</td>
<td>Reduction gearing is not suitable for turns/stroke of the actuator.</td>
<td>Exchange reduction gearing.</td>
</tr>
<tr>
<td>Fault in end position</td>
<td>The overrun was not considered when setting the limit switching.</td>
<td>Determine overrun: Overrun = travel covered from switching off until complete standstill.</td>
</tr>
<tr>
<td>Actuator runs to end stop although the limit switches work properly.</td>
<td>The overrun is generated by the inertia of both the actuator and the valve and the delay time of the controls.</td>
<td>Set limit switching again considering the overrun (turn handwheel back by the amount of the overrun).</td>
</tr>
<tr>
<td>Position transmitter RWG</td>
<td>Reduction gearing is not suitable for turns/stroke of the actuator.</td>
<td>Exchange reduction gearing.</td>
</tr>
<tr>
<td>Measurement range 4 – 20 mA or maximum value 20 mA cannot be set.</td>
<td>Switch is defective or switch setting is incorrect.</td>
<td>Check setting, if required, reset end positions. Check switches and replace them, if required.</td>
</tr>
</tbody>
</table>

Switch check

The red test buttons [1] and [2] are used for manual operation of the switches:

If the actuator is equipped with a DUO limit switching (option), the intermediate position switches (LSA and LSB) will be operated at the same time as the torque switches.

10.2 Fault indications and warning indications

Faults interrupt or prevent the electrical actuator operation. In the event of a fault, the display backlight is red.

Warnings have no influence on the electrical actuator operation. They only serve for information purposes.

Collective signals include further indications which can be displayed via the Details push button.
Table 11: Faults and warnings via status indications in the display

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>For indicated value > 0:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warnings S0005</td>
<td>Collective signal 02: Indicates the number of active warnings.</td>
<td>Press push button ⬇️ Details. For details, refer to <Warnings and Out of specification> table.</td>
</tr>
<tr>
<td>Not ready REMOTE S0006</td>
<td>Collective signal 04: Indicates the number of active signals.</td>
<td>Press push button ⬇️ Details. For details, refer to <Not ready REMOTE and Function check> table.</td>
</tr>
<tr>
<td>Fault S0007</td>
<td>Collective signal 03: Indicates the number of active faults. The actuator cannot be operated.</td>
<td>Press push button ⬇️ Details to display a list of detailed indications. For details, refer to <Faults and Failure> table.</td>
</tr>
<tr>
<td>Out of specification S0008</td>
<td>Collective signal 07: Indication according to NAMUR recommendation NE 107 Actuator is operated outside the normal operation conditions.</td>
<td>Press push button ⬇️ Details. For details refer to <Warnings and Out of specification> table.</td>
</tr>
<tr>
<td>Function check S0009</td>
<td>Collective signal 08: Indication according to NAMUR recommendation NE 107 The actuator is being worked on; output signals are temporarily invalid.</td>
<td>Press push button ⬇️ Details. For details, refer to <Not ready REMOTE and Function check> table.</td>
</tr>
<tr>
<td>Maintenance required S0010</td>
<td>Collective signal 09: Indication according to NAMUR recommendation NE 107 Recommendation to perform maintenance.</td>
<td>Press push button ⬇️ Details to display a list of detailed indications.</td>
</tr>
<tr>
<td>Failure S0011</td>
<td>Collective signal 10: Indication according to NAMUR recommendation NE 107 Actuator function failure, output signals are invalid</td>
<td>Press push button ⬇️ Details to display a list of detailed indications. For details, refer to <Faults and Failure> table.</td>
</tr>
</tbody>
</table>

Table 12: Warnings and Out of specification

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config. warning</td>
<td>Collective signal 06: Possible cause: Configuration setting is incorrect. The device can still be operated with restrictions.</td>
<td>Press push button ⬇️ Details to display a list of individual indications. For a description of the individual signals, refer to Manual (Operation and setting).</td>
</tr>
<tr>
<td>Internal warning</td>
<td>Collective signal 15: Device warnings The device can still be operated with restrictions.</td>
<td>Press push button ⬇️ Details to display a list of individual indications. For a description of the individual signals, refer to Manual (Operation and setting).</td>
</tr>
<tr>
<td>24 V DC external</td>
<td>The external 24 V DC voltage supply of the controls has exceeded the power supply limits.</td>
<td>Check 24 V DC voltage supply.</td>
</tr>
<tr>
<td>Wrm on time running</td>
<td>Warning on time max. running time/h exceeded</td>
<td>Check modulating behaviour of actuator. Check parameter Permissible running time/h M0356, re-set if required.</td>
</tr>
<tr>
<td>Wrm on time starts</td>
<td>Warning on time max. number of motor starts (starts) exceeded</td>
<td>Check modulating behaviour of actuator. Check parameter Permissible starts/h M0357, re-set if required.</td>
</tr>
<tr>
<td>Failure behav. active</td>
<td>The failure behaviour is active since all required setpoints and actual values are incorrect.</td>
<td>Verify signals: Setpoint E1 Actual value E2 Actual process value E4</td>
</tr>
<tr>
<td>Wrm input AIN 1</td>
<td>Warning: Loss of signal analogue input 1</td>
<td>Check wiring.</td>
</tr>
<tr>
<td>Wrm input AIN 2</td>
<td>Warning: Loss of signal analogue input 2</td>
<td>Check wiring.</td>
</tr>
<tr>
<td>Wrm setpoint position</td>
<td>Warning: Loss of signal of actuator setpoint position Possible causes: Input signal for setpoint = 0 (signal loss)</td>
<td>Check setpoint signal.</td>
</tr>
<tr>
<td>Indication on display</td>
<td>Description/cause</td>
<td>Remedy</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| **Op. time warning** | The set time (parameter Perm.op. time, manual M0570) has been exceeded. The preset operating time is exceeded for a complete travel from end position OPEN to end position CLOSED. | The warning indications are automatically cleared once a new operation command is executed.
- Check valve.
- Check parameter Perm.op. time, manual M0570. |
| **Wrm controls temp.** | Temperature within controls housing too high | Measure/reduce ambient temperature. |
| **Wrm motor temp.** | Temperature within motor winding too high | Check actuator sizing, correct accordingly. |
| **Wrn gearbox temp.** | Temperature within actuator gear housing too high | Check actuator sizing, correct accordingly. |
| **RTC not set** | Real time clock has not yet been set. | Set time. |
| **RTC button cell** | Voltage of the RTC button cell is too low. | Replace button cell. |
| **PVST fault** | Partial Valve Stroke Test (PVST) could not be successfully completed. | Check actuator (PVST settings). |
| **PVST abort** | Partial Valve Stroke Test (PVST) was aborted or could not be started. | Perform RESET or restart PVST. |
| **Wrn no reaction** | No actuator reaction to operation commands within the set reaction time. |
- Check movement at actuator.
- Check parameter Reaction time M0634. |
| **Wrn FOC** | Optical receiving signal (channel 1) incorrect (no or insufficient Rx receive level) or RS-485 format error (incorrect bit(s)) | Check/repair FO cables. |
| **Wrn FO cable budget** | Warning: FO cable system reserve reached (critical or permissible Rx receive level) | Check/repair FO cables. |
| **Wrn FO cable connection** | Warning FO cable connection is not available. | Fit FO cable connection. |
| **Torque wrn OPEN** | Limit value for torque warning in direction OPEN exceeded. | Check parameter Wrn torque OPEN M0768, re-set if required. |
| **Torque wrn CLOSE** | Limit value for torque warning in direction CLOSE exceeded. | Check parameter Wrn torque CLOSE M0769, re-set if required. |

Table 13: Faults and Failure

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration error</td>
<td>Collective signal 11: Configuration error has occurred.</td>
<td>Press push button ➤ Details to display a list of individual indications. For a description of the individual signals, refer to Manual (Operation and setting).</td>
</tr>
<tr>
<td>Config. error REMOTE</td>
<td>Collective signal 22: Configuration error has occurred.</td>
<td>Press push button ➤ Details to display a list of individual indications. For a description of the individual signals, refer to Manual (Operation and setting).</td>
</tr>
</tbody>
</table>
| **Internal error** | Collective signal 14: Internal error has occurred. | AUMA service
Press push button ➤ Details to display a list of individual indications.
For a description of the individual signals, refer to Manual (Operation and setting). |
| **Torque fault CLOSE** | Torque fault in direction CLOSE | Perform one of the following measures:
- Issue operation command in direction OPEN.
- Set selector switch to position Local control (LOCAL) and reset fault indication via push button RESET. |
| **Torque fault OPEN** | Torque fault in direction OPEN | Perform one of the following measures:
- Issue operation command in direction CLOSE.
- Set selector switch to position Local control (LOCAL) and reset fault indication via push button RESET. |
Phase fault
- When connecting to a 3-ph AC system and with internal 24 V DC supply of the electronics: Phase 2 is missing.
- When connecting to a 3-ph or 1-ph AC system and with external 24 V DC supply of the electronics: One of the phases L1, L2 or L3 is missing.

Remedy
Test/connect phases.

Incorrect phase seq
The phase conductors L1, L2 and L3 are connected in the wrong sequence. Only applicable if connected to a 3-ph AC system.

Remedy
Correct the sequence of the phase conductors L1, L2 and L3 by exchanging two phases.

Mains quality
Due to insufficient mains quality, the controls cannot detect the phase sequence (sequence of phase conductors L1, L2 and L3) within the pre-set time frame provided for monitoring.

Remedy
- Check mains voltage.
- Check parameter **Tripping time M0172**, extend time frame if required.

Thermal fault
Motor protection tripped

Remedy
- Cool down, wait.
- If the fault indication display persists after cooling down:
 - Set selector switch to position **Local control** (LOCAL) and reset fault indication via push button **RESET**.
 - Check fuses.

Fault no reaction
No actuator reaction to operation commands within the set reaction time.

Remedy
Check movement at actuator.

Table 14: Not ready REMOTE and Function check (collective signal 04)

<table>
<thead>
<tr>
<th>Indication on display</th>
<th>Description/cause</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong oper. cmd</td>
<td>Collective signal 13: Possible causes: Several operation commands (e.g. OPEN and CLOSE simultaneously, or OPEN and SETPOINT operation simultaneously) A setpoint is present and the positioner is not active For fieldbus: Setpoint exceeds 100.0 %</td>
<td></td>
</tr>
</tbody>
</table>
- Check operation commands (send one operation command only).
- Set parameter **Positioner to Function active**.
- Check setpoint. Press push button **Details** to display a list of individual indications. For a description of the individual signals, refer to Manual (Operation and setting). |

<table>
<thead>
<tr>
<th>Sel. sw. not REMOTE</th>
<th>Selector switch is not in position REMOTE.</th>
<th>Set selector switch to position REMOTE.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service active</td>
<td>Operation via service interface (Bluetooth) and service software AUMA ToolSuite.</td>
<td>Exit service software.</td>
</tr>
<tr>
<td>Disabled</td>
<td>Actuator is in operation mode Disabled.</td>
<td>Check setting and status of function <Local controls enable></td>
</tr>
<tr>
<td>EMCY stop active</td>
<td>The EMERGENCY stop switch has been operated. The motor control power supply (contactors or thyristors) is disconnected.</td>
<td></td>
</tr>
</tbody>
</table>
- Enable EMERGENCY stop switch.
- Reset EMERGENCY stop state by means of Reset command. |
| **EMCY behav. active** | Operation mode EMERGENCY is active (EMERGENCY signal was sent). 0 V are applied at the EMERGENCY input. |
- Detect cause for EMERGENCY signal.
- Verify failure source.
- Apply +24 V DC at EMERGENCY input. |
| **I/O interface** | The actuator is controlled via the I/O interface (parallel). | Check I/O interface. |
| **Handwheel active** | Manual operation is activated. | Start motor operation. |
| **FailState fieldbus** | Fieldbus connection available, however no process data transmission by the master. | Verify master configuration |
| **Local STOP** | A local STOP is active. Push button STOP of local controls is operated. | Release push button STOP. |
| **Interlock** | An interlock is active. | Check interlock signal. |
| **Interlock by-pass** | By-pass function is interlocked. | Check states of main and by-pass valve. |
| **PVST active** | Partial Valve Stroke Test (PVST) is active. | Wait until PVST function is complete. |
10.3 Fuses

10.3.1 Fuses within the actuator controls

Fuses used

F1/F2 Primary fuses on power supply unit

<table>
<thead>
<tr>
<th>G fuse</th>
<th>F1/F2</th>
<th>AUMA art. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>6.3 x 32 mm</td>
<td></td>
</tr>
<tr>
<td>Reversing contactors</td>
<td>1 A T; 500 V</td>
<td>K002.277</td>
</tr>
<tr>
<td>Power supply ≤ 500 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversing contactors</td>
<td>2 A FF; 690 V</td>
<td>K002.665</td>
</tr>
<tr>
<td>Power supply > 500 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyristor units for motor power up to 1.5 kW</td>
<td>1 A T; 500 V</td>
<td>K002.277</td>
</tr>
<tr>
<td>Thyristor units for motor power up to 3.0 kW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyristor units for motor power up to 5.5 kW</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F3 Internal 24 V DC supply

<table>
<thead>
<tr>
<th>G fuse according to IEC 60127-2/III</th>
<th>F3</th>
<th>AUMA art. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>5 x 20 mm</td>
<td></td>
</tr>
<tr>
<td>Voltage output (power supply unit) = 24 V</td>
<td>2.0 A T; 250 V</td>
<td>K006.106</td>
</tr>
<tr>
<td>Voltage output (power supply unit) = 115 V</td>
<td>2.0 A T; 250 V</td>
<td>K006.106</td>
</tr>
</tbody>
</table>

F4 Internal 24 V AC supply (115 V AC) for:
- Heater, switch compartment, reversing contactors control
- PTC tripping device
- for 115 V AC also control inputs OPEN - STOP - CLOSE

<table>
<thead>
<tr>
<th>G-fuse according to IEC 60127-2/III</th>
<th>F4</th>
<th>AUMA art. no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>5 x 20 mm</td>
<td></td>
</tr>
<tr>
<td>Voltage output (power supply unit) = 24 V</td>
<td>1.25 A T; 250 V</td>
<td>K001.184</td>
</tr>
<tr>
<td>Voltage output (power supply unit) = 115 V</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

F5 Automatic reset fuse as short-circuit protection for external 24 V DC supply for customer (see wiring diagram)

Replace fuses F1/F2

DANGER

Hazardous voltage!

Risk of electric shock.

→ Disconnect device from the mains before opening.
1. Loosen screws [1] and remove plug/socket connector [2].

2. Pull fuse holder [3] out of pin carrier, open fuse cover and replace old fuses by new ones.

Fuses F3/F4: test/replace

The power supply unit has measurement points (solder pins) allowing to perform a resistance (continuity) measurement:

<table>
<thead>
<tr>
<th>Verifying</th>
<th>Measuring points</th>
</tr>
</thead>
<tbody>
<tr>
<td>F3</td>
<td>MTP5 – MTP6</td>
</tr>
<tr>
<td>F4</td>
<td>MTP7 – MTP8</td>
</tr>
</tbody>
</table>

2. To replace defective fuses:. Carefully loosen power supply unit [3] and pull out. (The fuses are on the equipped part of the power supply board).

Cable damage due to pinching!

Risk of functional failures.

→ Carefully assemble power supply unit to avoid pinching the cables.

10.3.2 Motor protection (thermal monitoring)

In order to protect against overheating and impermissibly high surface temperatures at the actuator, PTC thermistors or thermostats are embedded in the motor winding. The thermostats is tripped as soon as the max. permissible winding temperature has been reached.

The actuator is switched off and the following signals are given:

- LED 3 (thermal fault) on the local controls is illuminated.
• Status indication S0007 displays an error. The error Thermoswitch is displayed when selecting Details.

The motor has to cool down before the operation can be resumed. Depending on the parameter setting, the fault signal is either automatically reset or the fault signal has to be reset using the push button Reset in selector switch position LOCAL.

For further information to this topic, please refer to Manual (Operation and setting).
11. Servicing and maintenance

CAUTION

Damage caused by inappropriate maintenance!

→ Servicing and maintenance must be carried out exclusively by suitably qualified personnel having been authorised by the end user or the contractor of the plant. Therefore, we recommend contacting our service.

→ Only perform servicing and maintenance tasks when the device is switched off.

AUMA offer extensive service such as servicing and maintenance as well as customer product training. For the relevant contact addresses, please refer to Addresses in this document or to the Internet (www.auma.com).

11.1 Preventive measures for servicing and safe operation

The following measures are required to ensure safe device operation:

6 months after commissioning and then every year

- Carry out visual inspection:
 - Cable entries, cable glands, blanking plugs, etc. have to be checked for correct tightness and sealing.
 - Respect torques according to manufacturer's details.
- Check fastening screws between actuator and gearbox/valve for tightness. If required, fasten screws while applying the tightening torques as indicated in chapter Assembly.
- When rarely operated: Perform test run.
- For devices with output drive A: Press in Lithium soap EP multi-purpose grease on mineral oil base at the grease nipple with a grease gun.
- Lubrication of the valve stem must be done separately.

Figure 78: Output drive type A

![Output drive type A](image)

[1] Output drive type A

Table 15: Grease quantities for bearing of output drive type A

<table>
<thead>
<tr>
<th>Output drive</th>
<th>A 07.2</th>
<th>A 10.2</th>
<th>A 14.2</th>
<th>A 16.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity [g]</td>
<td>1.5</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

1) For grease at density \(r = 0.9 \text{ kg/dm}^3 \)

For enclosure protection IP 68

After continuous immersion:

- Check actuator.
- In case of ingress of water, locate leaks and repair, dry device correctly and check for proper function.

11.2 Maintenance

Lubrication

- In the factory, the gear housing is filled with grease.
Grease change is performed during maintenance
- Generally after 4 to 6 years for modulating duty.
- Generally after 6 to 8 years if operated frequently (open-close duty).
- Generally after 10 to 12 years if operated rarely (open-close duty).

We recommend exchanging the seals when changing the grease.
No additional lubrication of the gear housing is required during operation.

11.3 Disposal and recycling

Our devices have a long lifetime. However, they have to be replaced at one point in time. The devices have a modular design and may, therefore, easily be separated and sorted according to materials used, i.e.:

- electronic scrap
- various metals
- plastics
- greases and oils

The following generally applies:

- Greases and oils are hazardous to water and must not be released into the environment.
- Arrange for controlled waste disposal of the disassembled material or for separate recycling according to materials.
- Observe the national regulations for waste disposal.
12. Technical data

Information

The following technical data includes standard and optional features. For detailed information on the customer-specific version, refer to the order-relevant data sheet. This data sheet can be downloaded from the Internet at http://www.auma.com in German and English (indication of commission number required).

12.1 Features and functions of actuator

| Type of duty¹⁾ | Standard: *
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>● SA: Short-time duty S2 - 15 min</td>
<td></td>
</tr>
<tr>
<td>● SAR: Intermittent duty S4 - 25 %</td>
<td></td>
</tr>
</tbody>
</table>
| Options: *
| ● SA: Short-time duty S2 - 30 min | |
| ● SAR: Intermittent duty S4 - 50 % | |
| ● SAR: Intermittent duty S5 – 25 % | |

Torque range	Refer to actuator name plate
Output speed	Refer to actuator name plate
Motor	Standard: 3-ph AC asynchronous motor, type IM B9 according to IEC 60034
Motor voltage and frequency	Refer to motor name plate
Insulation class	Standard: F, tropicalized
Option: H, tropicalized	
Motor protection	Standard: Thermoswitches (NC)
Option: PTC thermistors (according to DIN 44082)	
Self-locking	Self-locking: Output speeds up to 90 rpm (50 Hz), 108 rpm (60 Hz)
NOT self-locking: Output speeds up to 125 rpm (50 Hz), 150 rpm (60 Hz)	
Multi-turn actuators are self-locking, if the valve position cannot be changed from standstill while torque acts upon the output drive.	
Limit switching	Counter gear mechanism for end positions CLOSED and OPEN
Turns per stroke: 2 to 500 (standard) or 2 to 5,000 (option)	
Standard: *	
● Single switches (1 NC and 1 NO, not galvanically isolated) for each end position	
Options: *	
● Tandem switches (2 NC and 2 NO) for each end position, switches galvanically isolated	
● Triple switches (3 NC and 3 NO) for each end position, switches galvanically isolated	
● Intermediate position switch (DUO limit switching), adjustable for any position	
Torque switching	Torque switching adjustable for directions OPEN and CLOSE
Standard: *	
Single switch (1 NC and 1 NO; not galvanically isolated) for each direction	
Option: *	
Tandem switches (2 NC and 2 NO) for each direction, switches galvanically isolated	
Position feedback signal, analogue (option)	Potentiometer or 0/4 – 20 mA (RWG)
Mechanical position indicator (option)	Continuous indication, adjustable indicator disc with symbols OPEN and CLOSED
Heater in switch compartment	Standard: Resistance type heater, 5 W, 24 V DC, (internal supply)
Motor heater (option)	Voltages: 110 – 120 V AC, 220 – 240 V AC or 400 V AC (externally supplied)
Power depending on the size 12.5 – 25 W	
Manual operation	Manual drive for setting and emergency operation, handwheel does not rotate during electrical operation.
Option: Handwheel lockable	
Connection to controls	AUMA plug/socket connector with screw-type connection
Valve attachment
Standard: B1 according to EN ISO 5210
Options:
A, B2, B3, B4 according to EN ISO 5210
A, B, D, E according to DIN 3210
C according to DIN 3338
Special output drive types: AF, B3D, ED, DD, IB1, IB3
A prepared for stem lubrication

Sensor system
Indication for manual operation (option)	Indication whether manual operation is active/not active via switch (1 change-over contact)

1) For nominal voltage and 40 °C ambient temperature and an average load with running torque or modulating torque according to separate technical data. The type of duty must not be exceeded.

Technical data for limit and torque switches

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical lifetime</td>
<td>2×10^6 starts</td>
</tr>
<tr>
<td>Silver plated contacts:</td>
<td></td>
</tr>
<tr>
<td>U min.</td>
<td>30 V AC/DC</td>
</tr>
<tr>
<td>U max.</td>
<td>250 V AC/DC</td>
</tr>
<tr>
<td>I min.</td>
<td>20 mA</td>
</tr>
<tr>
<td>I max. AC current</td>
<td>5 A at 250 V (resistive load)</td>
</tr>
<tr>
<td>I max. DC current</td>
<td>0.4 A at 250 V (resistive load)</td>
</tr>
<tr>
<td>Gold plated contacts:</td>
<td></td>
</tr>
<tr>
<td>U min.</td>
<td>5 V</td>
</tr>
<tr>
<td>U max.</td>
<td>30 V</td>
</tr>
<tr>
<td>I min.</td>
<td>4 mA</td>
</tr>
<tr>
<td>I max.</td>
<td>400 mA</td>
</tr>
</tbody>
</table>

Technical data for blinker transmitter

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical lifetime</td>
<td>10^7 starts</td>
</tr>
<tr>
<td>Silver plated contacts:</td>
<td></td>
</tr>
<tr>
<td>U min.</td>
<td>10 V AC/DC</td>
</tr>
<tr>
<td>U max.</td>
<td>250 V AC/DC</td>
</tr>
<tr>
<td>I max. AC current</td>
<td>3 A at 250 V (resistive load)</td>
</tr>
<tr>
<td>I max. DC current</td>
<td>0.25 A at 250 V (resistive load)</td>
</tr>
</tbody>
</table>

Technical data for handwheel activation switches

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical lifetime</td>
<td>10^6 starts</td>
</tr>
<tr>
<td>Silver plated contacts:</td>
<td></td>
</tr>
<tr>
<td>U min.</td>
<td>12 V DC</td>
</tr>
<tr>
<td>U max.</td>
<td>250 V AC</td>
</tr>
<tr>
<td>I max. AC current</td>
<td>3 A at 250 V (inductive load, cos phi = 0.8)</td>
</tr>
<tr>
<td>I max. DC current</td>
<td>3 A at 12 V (resistive load)</td>
</tr>
</tbody>
</table>
12.2 Features and functions of actuator controls

Power supply
- **Mains frequency**
 - For mains voltage and mains frequency, refer to name plates at the controls and the motor
 - Permissible variation of the mains voltage: ±10 %
 - Permissible variation of the mains frequency: ±5 %
 - Option: Permissible variation of the mains voltage: ±30 %

External supply of the electronics (option)
- 24 V DC +20 % / –15 %
 - Current consumption: Basic version approx. 250 mA, with options up to 500 mA
 - The external power supply must have a reinforced insulation against the mains voltage in accordance with IEC 61010-1 and may only be supplied by a circuit limited to 150 VA in accordance with IEC 61010-1.

Current consumption
- Current consumption of the controls depending on the mains voltage:
 - For permissible variation of mains voltage by ±10 %:
 - 100 to 120 V AC = max. 740 mA
 - 208 to 240 V AC = max. 400 mA
 - 380 to 500 V AC = max. 250 mA
 - 515 to 690 V AC = max. 200 mA
 - For permissible variation of mains voltage by ±30 %:
 - 100 to 120 V AC = max. 1,200 mA
 - 208 to 240 V AC = max. 750 mA
 - 380 to 500 V AC = max. 400 mA
 - 515 to 690 V AC = max. 400 mA
 - Motor current consumption: Refer to motor name plate

Overvoltage category
- Category III according to IEC 60634-4-443

Rated power
- The controls are designed for the rated motor power, refer to motor name plate

Switchgear
- **Standard:**
 - Reversing contactors (mechanically and electrically interlocked) for motor power up to power class A1
- **Options:**
 - Reversing contactors (mechanically and electrically interlocked) for motor power up to power class A2
 - Thyristor unit for mains voltage up to 500 V AC (recommended for modulating actuators) for AUMA power classes B1, B2 and B3

Control
- **Standard:**
 - Via digital inputs OPEN, STOP, CLOSE, EMERGENCY (via opto-isolator, OPEN, STOP, CLOSE with one common), respect minimum pulse duration for modulating actuators
- **Option:**
 - Additional enable inputs for directions OPEN and CLOSE

Voltage and current values for control inputs
- **Standard:**
 - 24 V DC, current consumption: approx. 10 mA per input
 - 48 V DC, current consumption: approx. 7 mA per input
 - 60 V DC, current consumption: approx. 9 mA per input
 - 110 V DC, current consumption: approx. 8 mA per input
 - 115 V DC, current consumption: approx. 15 mA per input
 - 115 V AC, current consumption: approx. 15 mA per input
Status signals

<table>
<thead>
<tr>
<th>Standard:</th>
<th>6 programmable output contacts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 5 potential-free NO contacts with one common, max. 250 V AC, 1 A (resistive load)</td>
<td></td>
</tr>
<tr>
<td>- Default configuration: End position CLOSED, end position OPEN, selector switch in REMOTE, torque fault CLOSE, torque fault OPEN</td>
<td></td>
</tr>
<tr>
<td>- 1 potential-free change-over contact, max. 250 V AC, 5 A (resistive load)</td>
<td></td>
</tr>
<tr>
<td>- Default configuration: Collective fault signal (torque fault, phase failure, motor protection tripped)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Options:</th>
<th>6 programmable output contacts:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 5 change-over contacts with one common, max. 250 V AC, 5 A (resistive load)</td>
<td></td>
</tr>
<tr>
<td>- 1 potential-free change-over contact, max. 250 V AC, 5 A (resistive load)</td>
<td></td>
</tr>
</tbody>
</table>

Position feedback signal

| Galvanically isolated analogue output E2 = 0/4 – 20 mA (load max. 500 Ω) |

Voltage output

| Standard: | Auxiliary voltage 24 V DC, max. 100 mA for supply of the control inputs, galvanically isolated from internal voltage supply |
| Option: | Auxiliary voltage 115 V AC, max. 30 mA to supply the control inputs, galvanically isolated from internal voltage supply |

Local controls

| Standard: | Selector switch LOCAL - OFF - REMOTE (lockable in all three positions) |
| - Push buttons OPEN, STOP, CLOSE, RESET |
| - 6 indication lights: |
| - End position CLOSED (yellow), torque fault CLOSE (red), motor protection tripped (red), torque fault OPEN (red), end position and running indication OPEN (green), Bluetooth (blue) |
| - Graphic LC display, illuminated |

| Options: | Special colours for the 5 indication lights: |
| - End position CLOSED (green), torque fault CLOSE (blue), torque fault OPEN (yellow), motor protection tripped (white), end position OPEN (red) |

Bluetooth Communication interface

| Bluetooth class II chip, version 2.0 with a range up to 10 m in industrial environments. Supports the SPP Bluetooth profile (Serial Port Profile). | Programming software: AUMA ToolSuite, commissioning and diagnostic tool for windows based PCs, PDAs and smart phones |

Application functions

| Standard: | Switch-off mode adjustable |
| - Limit or torque seating for end position OPEN and end position CLOSED |
| - Torque by-pass, adjustable up to 5 seconds (no torque monitoring during this time) |
| - Start and end of stepping mode as well as ON and OFF time (1 up to 1,800 seconds) can be programmed individually for directions OPEN and CLOSE. |
| - Any 8 intermediate positions between 0 and 100 %, reaction and signal behaviour programmable |

| Options: | Positioner |
| - Position setpoint via analogue input E1 = 0/4 – 20 mA |
| - Automatic adaptation of the dead band (adaptive behaviour can be selected) |
| - Split Range operation |
| - MODE input for selecting between OPEN - CLOSE duty and modulating duty |
Failure functions

Standard:
- EMERGENCY operation, behaviour programmable
 - Digital input low active, reaction can be selected: Stop, move to end position CLOSED, move to intermediate position OPEN, move to intermediate position.
 - Torque monitoring can be by-passed during EMERGENCY operation.
 - Thermal protection can be by-passed during EMERGENCY operation (only in combination with thermoswitch in the actuator, not with PTC thermistor).

Options:
- Enabling local controls via digital input Enable LOCAL. Thus, the actuator operation can be enabled or disabled via push buttons on the local controls.
- Local Stop
 - The actuator can be stopped via push button Stop of local controls if the selector switch is in position REMOTE. Not activated when leaving the factory.
- EMERGENCY stop button (latching) interrupts electrical operation irrespective of the selector switch position.
- Interlock, enabling the operation commands OPEN or CLOSE via digital inputs Interlock OPEN or Interlock CLOSE.

Monitoring functions

Standard:
- Torque monitoring: Valve overload protection (adjustable), results in switching off and generates fault indication
- Motor temperature monitoring (thermal monitoring), results in switching off and generates fault indication
- Monitoring the heater within the actuator, generates warning signal
- Monitoring of permissible on-time and number of starts (adjustable), generates warning signal
- Operation time monitoring (adjustable), generates warning signal
- Phase failure monitoring, results in switching off and generates fault indication
- Automatic correction of the direction of rotation upon wrong phase sequence (3-phase AC current)

Diagnostic functions

- Electronic device ID with order and product data
- Logging of operating data: A resettable counter and a lifetime counter each for:
 - Motor running time, number of starts, torque switch trippings in end positions CLOSED, limit switch trippings in end position CLOSED, torque switch trippings in end position OPEN, limit switch trippings in end position OPEN, torque faults CLOSE, torque faults OPEN, motor protection trippings
- Time-stamped event report with setting, operation and fault history:
 - Status signals in compliance with NAMUR recommendation NE 107: "Failure", "Function check", "Out of specification", "Maintenance required"
- Torque characteristics
 - 3 torque characteristics (torque-travel characteristic) for opening and closing directions, can be saved separately. Torque characteristics stored can be shown on the display.

Electrical connection

Standard:
- AUMA plug/socket connector (S) with screw-type connection and M-threads

Options:
- Pg-threads, NPT-threads, G-threads, special threads
- Gold-plated control contacts (pins and sockets)
- Parking frame for wall mounting of the disconnected plug
- Protection cover for plug compartment (when plug is removed)

Wiring diagram

Refer to name plate

1. The reversing contactors are designed for a lifetime of 2 million starts.
2. For the assignment of AUMA power classes, please refer to electrical data on actuator.
3. All input signals must be supplied with the same potential.
4. Not possible for low temperature versions with heating system
5. Not possible in combination with PTC tripping device
12.3 Service conditions

<table>
<thead>
<tr>
<th>Use</th>
<th>Indoor and outdoor use permissible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mounting position</td>
<td>Any position</td>
</tr>
</tbody>
</table>
| Enclosure protection according to EN 60529 | Standard: IP 68 with AUMA 3-ph AC motor/1-ph AC motor. According to AUMA definition, enclosure protection IP 68 meets the following requirements:
 - Depth of water: maximum 8 m head of water
 - Duration of continuous immersion in water: max. 96 hours
 - Up to 10 operations during flooding.
 - Modulating duty is not possible during continuous immersion. For actual version, refer to actuator/controls name plate. |
| Corrosion protection | Standard:
 - KS: Suitable for installation in industrial units, in water or power plants with a low pollutant concentration as well as for installation in occasionally or permanently aggressive atmosphere with a moderate pollutant concentration (e.g. in wastewater treatment plants, chemical industry)
 - Options:
 - KX: Suitable for installation in extremely aggressive atmospheres with high humidity and high pollutant concentration |
| Installation altitude | Standard: ≤ 2,000 m above sea level
 - Option: > 2,000 m above sea level, please contact AUMA |
| Humidity | Up to 100 % relative humidity over the entire permissible temperature range |
| Pollution degree | Pollution degree 4 (when closed) according to 50178 |
| Finish coating | Standard: Paint based on polyurethane (powder coating) |
| Colour | Standard: AUMA silver-grey (similar to RAL 7037) |
| Ambient temperature | Standard:
 - Open-close duty: –25 °C to +70 °C
 - Modulating duty: –25 °C to +60 °C
 - For actual version, refer to actuator/controls name plate. |
| Vibration resistance according to IEC 60068-2-6 | 1 g, from 10 to 200 Hz
 - Resistant to vibration during start-up or for failures of the plant. However, a fatigue strength may not be derived from this. Not valid in combination with gearboxes. |
| Lifetime | AUMA part-turn actuators meet or exceed the lifetime requirements of EN 15714-2. For further details, please contact AUMA |
| Weight | Refer to separate technical data |

12.4 Accessories

| Wall bracket | AUMATIC mounted separately from the actuator, including plug/socket connector. Connecting cables on request. Recommended for high ambient temperatures, difficult access, or in case of heavy vibration during service |
| Programming software for PC | AUMA ToolSuite |

1) Cable length between actuator and AUMATIC max. 100 m. Not suitable for version with potentiometer in the actuator. Instead of the potentiometer, an RWG has to be used.

12.5 Further information

 - Low Voltage Directive: (2006/95/EC)
 - Machinery Directive: (2006/42/EC) |
13. **Spare parts**

13.1 **Multi-turn actuators SA 07.2 – SA 16.2/SAR 07.2 – SAR 16.2**
Information: Please state type and commission no. of the device (see name plate) when ordering spare parts. Only original AUMA spare parts should be used. Failure to use original spare parts voids the warranty and exempts AUMA from any liability. Delivered spare parts may slightly vary from the representation.

<table>
<thead>
<tr>
<th>No.</th>
<th>Designation</th>
<th>Type</th>
<th>No.</th>
<th>Designation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>001.0</td>
<td>Housing</td>
<td>Sub-assembly</td>
<td>553.0</td>
<td>Mechanical position indicator</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>002.0</td>
<td>Bearing flange</td>
<td>Sub-assembly</td>
<td>554.0</td>
<td>Socket carrier with motor cable harness</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>003.0</td>
<td>Hollow shaft with worm wheel</td>
<td>Sub-assembly</td>
<td>556.0</td>
<td>Potentiometer for position transmitter</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>005.0</td>
<td>Drive shaft</td>
<td>Sub-assembly</td>
<td>556.1</td>
<td>Potentiometer without slip clutch</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>005.1</td>
<td>Motor coupling on output drive shaft</td>
<td>Sub-assembly</td>
<td>557.0</td>
<td>Heater</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>005.3</td>
<td>Manual drive coupling</td>
<td>Sub-assembly</td>
<td>558.0</td>
<td>Blinker transmitter including pins at wires (without impulse disc and insulation plate)</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>009.0</td>
<td>Planetary gear for manual drive</td>
<td>Sub-assembly</td>
<td>559.0-1</td>
<td>Control unit with torque switching heads and switches</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>017.0</td>
<td>Torque lever</td>
<td>Sub-assembly</td>
<td>559.0-2</td>
<td>Control unit with magnetic limit and torque transmitter (MWG) for Non-intrusive version in combination with AUMATIC integral controls</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>018.0</td>
<td>Gear segment</td>
<td>Sub-assembly</td>
<td>560.0-1</td>
<td>Switch stack for direction OPEN</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>019.0</td>
<td>Crown wheel</td>
<td>Sub-assembly</td>
<td>560.0-2</td>
<td>Switch stack for direction CLOSE</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>022.0</td>
<td>Drive pinion II for torque switching</td>
<td>Sub-assembly</td>
<td>560.1</td>
<td>Switch for limit/torque switching</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>023.0</td>
<td>Output drive wheel for limit switching</td>
<td>Sub-assembly</td>
<td>560.2</td>
<td>Switch case</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>024.0</td>
<td>Drive wheel for limit switching</td>
<td>Sub-assembly</td>
<td>566.0</td>
<td>Position transmitter RWG</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>025.0</td>
<td>Locking plate</td>
<td>Sub-assembly</td>
<td>566.1</td>
<td>Potentiometer for RWG without slip clutch</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>058.0</td>
<td>Wire for protective earth (pin)</td>
<td>Sub-assembly</td>
<td>566.2</td>
<td>Electronic board RWG</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>070.0</td>
<td>Motor (VD motor incl. no. 079.0)</td>
<td>Sub-assembly</td>
<td>566.3</td>
<td>Wire harness for RWG</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>079.0</td>
<td>Planetary gear for motor drive (SA/SAR 07.2 — 16.2 for VD motor)</td>
<td>Sub-assembly</td>
<td>567.1</td>
<td>Slip clutch for potentiometer/RWG</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>155.0</td>
<td>Reduction gearing</td>
<td>Sub-assembly</td>
<td>568.1</td>
<td>Stem protection tube (without cap)</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>500.0</td>
<td>Cover for switch compartment</td>
<td>Sub-assembly</td>
<td>568.2</td>
<td>Cap for stem protection tube</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>501.0</td>
<td>Socket carrier (complete with sockets)</td>
<td>Sub-assembly</td>
<td>568.3</td>
<td>V-seal</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>502.0</td>
<td>Pin carrier without pins</td>
<td>Sub-assembly</td>
<td>574.1</td>
<td>Radial seal output drive A for ISO flange</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>503.0</td>
<td>Socket for controls</td>
<td>Sub-assembly</td>
<td>575.1</td>
<td>Stem nut type A</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>504.0</td>
<td>Socket for motor</td>
<td>Sub-assembly</td>
<td>583.0</td>
<td>Motor coupling on motor shaft</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>505.0</td>
<td>Pin for controls</td>
<td>Sub-assembly</td>
<td>583.1</td>
<td>Pin for motor coupling</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>506.0</td>
<td>Pin for motor</td>
<td>Sub-assembly</td>
<td>584.0</td>
<td>Retaining spring for motor coupling</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>507.0</td>
<td>Plug cover</td>
<td>Sub-assembly</td>
<td>S1</td>
<td>Seal kit, small</td>
<td>Set</td>
</tr>
<tr>
<td>511.0</td>
<td>Threaded plug</td>
<td>Sub-assembly</td>
<td>S2</td>
<td>Seal kit, large</td>
<td>Set</td>
</tr>
<tr>
<td>514.0</td>
<td>Output drive form A (without stem nut)</td>
<td>Sub-assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>514.1</td>
<td>Axial needle roller bearing</td>
<td>Sub-assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>516.0</td>
<td>Output drive D</td>
<td>Sub-assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>535.1</td>
<td>Snap ring</td>
<td>Sub-assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>539.0</td>
<td>Screw plug</td>
<td>Sub-assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>542.0</td>
<td>Handwheel with ball handle</td>
<td>Sub-assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>549.0</td>
<td>Output drive B1/B3/B4/C</td>
<td>Sub-assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>549.1</td>
<td>Output drive sleeve B1/B3/B4/C</td>
<td>Sub-assembly</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13.2 Actuator controls AUMATIC AC 01.2
Information: Please state type and commission no. of the device (see name plate) when ordering spare parts. Only original AUMA spare parts should be used. Failure to use original spare parts voids the warranty and exempts AUMA from any liability. Delivered spare parts may slightly vary from the representation.

<table>
<thead>
<tr>
<th>No.</th>
<th>Designation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>001.0</td>
<td>Housing</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>002.0</td>
<td>Local controls</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>002.3</td>
<td>Local controls board</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>002.4</td>
<td>Display faceplate</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>006.0</td>
<td>Power supply</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>008.1−1</td>
<td>I/O board</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>009.0</td>
<td>Logic board</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>011.1</td>
<td>Relay board</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>012.0</td>
<td>Option board</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>500.0</td>
<td>Cover</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>501.0</td>
<td>Socket carrier complete with sockets</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>502.0</td>
<td>Pin carrier without pins</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>503.0</td>
<td>Socket for controls</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>504.0</td>
<td>Socket for motor</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>505.0</td>
<td>Pin for controls</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>506.0</td>
<td>Pin for motor</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>507.0</td>
<td>Plug cover</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>508.0</td>
<td>Switchgear</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>509.1</td>
<td>Padlock</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>510.0</td>
<td>Fuse kit</td>
<td>Sub-assembly</td>
</tr>
<tr>
<td>S</td>
<td>Seal kit</td>
<td>Set</td>
</tr>
</tbody>
</table>
14. Certificates

14.1 Declaration of Incorporation and EC Declaration of Conformity

Original Declaration of Incorporation of Partly Completed Machinery
(EC Directive 2006/42/EC) and EC Declaration of Conformity in compliance with the
Directives on EMC and Low Voltage

for electric AUMA multi-turn actuators of the type ranges SA 07.2 – SA 16.2 and SAR 07.2 – SAR 16.2
in versions AUMA NORM, AUMA SEMIPACT, AUMA MATIC or AUMATIC.

AUMA Riester GmbH & Co. KG as manufacturer declares herewith, that the above mentioned multi-turn
actuators meet the following basic requirements of the EC Machinery Directive 2006/42/EC: Annex I, articles
1.1.2, 1.1.3, 1.1.5, 1.2.1; 1.2.6, 1.3.1, 1.3.7, 1.5.1, 1.6.3, 1.7.1, 1.7.3, 1.7.4

The following harmonised standards within the meaning of the Machinery Directive have been applied:

EN 12100-1: 2003
EN 12100-2: 2003
ISO 5210: 1996
EN 60204-1: 2006

With regard to the partly completed machinery, the manufacturer commits to submitting the documents to the
competent national authority via electronic transmission upon request. The relevant technical documentation
pertaining to the machinery described in Annex VII, part B has been prepared.

AUMA multi-turn actuators are designed to be installed on industrial valves. AUMA multi-turn actuators must
not be put into service until the final machinery into which they are to be incorporated has been declared in
conformity with the provisions of the EC Directive 2006/42/EC.

Authorised person for documentation: Peter Malus, Aumastrasse 1, D-70379 Muelheim

As partly completed machinery, the multi-turn actuators further comply with the requirements of the following
directives and the respective approximation of national laws as well as the respective harmonised standards
as listed below:

EN 61000-6-4: 2007
EN 61000-6-2: 2005

(2) Low Voltage Directive (2006/95/EC)
EN 60204-1: 2006
EN 60034-1: 2004
EN 50178: 1997
EN 61010-1: 2001

Year of affixing of the CE marking: 2010

Muelheim/2006-12-29

H. Neuerla, General Management

This declaration does not contain any guarantees. The safety instructions in product documentation supplied with the devices must be
observed. Non-compliant modification of the devices voids this declaration.
Index

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Accessories (electrical connection)</td>
</tr>
<tr>
<td>Accessories for assembly</td>
<td>16</td>
</tr>
<tr>
<td>Actual value - indication on display</td>
<td>34</td>
</tr>
<tr>
<td>Actuator operation at the local controls</td>
<td>25</td>
</tr>
<tr>
<td>Actuator operation from remote</td>
<td>26</td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>8, 65</td>
</tr>
<tr>
<td>Analogue signals</td>
<td>40</td>
</tr>
<tr>
<td>Applications</td>
<td>5</td>
</tr>
<tr>
<td>Assembly</td>
<td>12</td>
</tr>
<tr>
<td>C</td>
<td>Cable set</td>
</tr>
<tr>
<td>Commission number</td>
<td>8, 9</td>
</tr>
<tr>
<td>Commissioning</td>
<td>5</td>
</tr>
<tr>
<td>Commissioning (indications on display)</td>
<td>32</td>
</tr>
<tr>
<td>Connecting cable</td>
<td>22</td>
</tr>
<tr>
<td>Control</td>
<td>9, 9</td>
</tr>
<tr>
<td>Corrective action</td>
<td>51</td>
</tr>
<tr>
<td>Corrosion protection</td>
<td>11, 65</td>
</tr>
<tr>
<td>Cross sections</td>
<td>19</td>
</tr>
<tr>
<td>Current consumption</td>
<td>18</td>
</tr>
<tr>
<td>D</td>
<td>DUO limit switching</td>
</tr>
<tr>
<td>Declaration of Incorporation</td>
<td>70</td>
</tr>
<tr>
<td>Device type</td>
<td>9, 9</td>
</tr>
<tr>
<td>Digital outputs</td>
<td>40</td>
</tr>
<tr>
<td>Direct display via ID</td>
<td>28</td>
</tr>
<tr>
<td>Direction of rotation</td>
<td>46</td>
</tr>
<tr>
<td>Directives</td>
<td>5</td>
</tr>
<tr>
<td>Display (indications)</td>
<td>32</td>
</tr>
<tr>
<td>Disposal</td>
<td>59</td>
</tr>
<tr>
<td>Double sealed</td>
<td>24</td>
</tr>
<tr>
<td>E</td>
<td>EC Declaration of Conformity</td>
</tr>
<tr>
<td>EMC</td>
<td>19</td>
</tr>
<tr>
<td>Earth connection</td>
<td>24</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>18</td>
</tr>
<tr>
<td>Electronic position transmitter</td>
<td>48</td>
</tr>
<tr>
<td>Enclosure protection</td>
<td>8, 65</td>
</tr>
<tr>
<td>Error - indication on display</td>
<td>32</td>
</tr>
<tr>
<td>F</td>
<td>Failure - indication on display</td>
</tr>
<tr>
<td>Fault - indication on display</td>
<td>36</td>
</tr>
<tr>
<td>Flange size</td>
<td>9</td>
</tr>
<tr>
<td>Function check - indication on display</td>
<td>37</td>
</tr>
<tr>
<td>H</td>
<td>Handwheel</td>
</tr>
<tr>
<td>I</td>
<td>Identification</td>
</tr>
<tr>
<td>Indication lights</td>
<td>39</td>
</tr>
<tr>
<td>Indications</td>
<td>32</td>
</tr>
<tr>
<td>Indications on display</td>
<td>32</td>
</tr>
<tr>
<td>Indicator disc</td>
<td>38, 49</td>
</tr>
<tr>
<td>Inspection record</td>
<td>9</td>
</tr>
<tr>
<td>Intermediate frame</td>
<td>24</td>
</tr>
<tr>
<td>Intermediate position indication via LEDs</td>
<td>39</td>
</tr>
<tr>
<td>Intermediate positions</td>
<td>45</td>
</tr>
<tr>
<td>Intrusive</td>
<td>10</td>
</tr>
<tr>
<td>L</td>
<td>LEDs (indications)</td>
</tr>
<tr>
<td>Language in the display</td>
<td>30</td>
</tr>
<tr>
<td>Limit switching</td>
<td>43, 47</td>
</tr>
<tr>
<td>Local actuator operation</td>
<td>25</td>
</tr>
<tr>
<td>Local control</td>
<td>25</td>
</tr>
<tr>
<td>Local controls</td>
<td>25</td>
</tr>
<tr>
<td>Local setting</td>
<td>27</td>
</tr>
<tr>
<td>Lubrication</td>
<td>58</td>
</tr>
<tr>
<td>M</td>
<td>Main menu</td>
</tr>
<tr>
<td>Mains frequency</td>
<td>19</td>
</tr>
<tr>
<td>Mains voltage</td>
<td>19</td>
</tr>
<tr>
<td>Maintenance</td>
<td>5, 58, 58</td>
</tr>
<tr>
<td>Maintenance required - indication on display</td>
<td>37</td>
</tr>
<tr>
<td>Manual operation</td>
<td>25</td>
</tr>
<tr>
<td>Mechanical position indicator</td>
<td>38, 49</td>
</tr>
<tr>
<td>Menu navigation</td>
<td>27</td>
</tr>
<tr>
<td>Motor heater</td>
<td>21</td>
</tr>
<tr>
<td>Motor operation</td>
<td>25</td>
</tr>
<tr>
<td>Multiport valve - Indications on display</td>
<td>35</td>
</tr>
<tr>
<td>N</td>
<td>Name plate</td>
</tr>
<tr>
<td>Network types</td>
<td>18</td>
</tr>
<tr>
<td>Non-Intrusive</td>
<td>10</td>
</tr>
<tr>
<td>Not ready REMOTE - indication on display</td>
<td>36</td>
</tr>
<tr>
<td>O</td>
<td>Operation</td>
</tr>
<tr>
<td>Operation commands - indications on display</td>
<td>34</td>
</tr>
<tr>
<td>Order number</td>
<td>8, 9</td>
</tr>
<tr>
<td>Out of specification - indication on display</td>
<td>37</td>
</tr>
<tr>
<td>Output contacts</td>
<td>40</td>
</tr>
<tr>
<td>Output drive type A</td>
<td>13</td>
</tr>
<tr>
<td>Output drive types B, B1, B2, B3, B4, and E</td>
<td>12</td>
</tr>
<tr>
<td>Output speed</td>
<td>8</td>
</tr>
</tbody>
</table>
SA 07.2 – SA 16.2/SAR 07.2 – SAR 16.2 Control unit: electromechanic

Index

P
Packaging 11
Parking frame 23
Password 28
Password change 29
Password entry 29
Position indicator 49
Position transmitter RWG 48
Positioner - indication on display 35
Potentiometer 48
Power supply 18, 19
Production, year 9
Protection cover 23
Protection on site 18
Protective measures 5

Q
Qualification of staff 5

R
RWG 48
Range of application 5
Recycling 59
Reference operation 47
Remote actuator operation 26
Running indication 38

S
Safety instructions 5
Safety instructions/warnings 5
Serial number 8, 9
Service 58
Service conditions 65
Servicing 58
Setpoint - indication on display 35
Short-circuit protection 18
Signals 40
Signals (analogue) 40
Size 9, 9
Spare parts 66
Standards 5
Status menu 28
Status signals 40
Stem nut 14
Stem protection tube 16
Storage 11
Supply networks 18
Support 58
Switch check 51

T
Technical data 60
Technical data for switches 61
Terminal plan 18
Test run 46
Torque - indication on display 34
Torque range 8
Torque switching 43
Transport 11
Type (device type) 9, 9
Type designation 8
Type of current 19
Type of lubricant 8

U
User level 28

V
Valve position - indication on display 33
Valve stem 16

W
Wall bracket 22
Warnings - indication on display 36
Wiring diagram 9, 9, 18
Works number 9

Y
Year of production 9
AUMA worldwide

Ferrostaal de Colombia Ltda.
CO Bogotá D.C.
Tel +57 1 401 1300
Fax+57 1 416 5489
dorian.hernandez@ferrostaal.com
www.ferrostaal.com

PROCONTIC Procesos y Control Automático
EC Quito
Tel +593 2 292 0431
Fax +593 2 292 2343
info@procontic.com.ec

Corsusa International S.A.C.
PE Miraflores - Lima
Tel +511 444-1200 / 0044 / 2321
Fax +511444-3664
corsusa@corsusa.com
www.corsusa.com

PASSCO Inc.
PR 00936-4153 San Juan
Tel +18 09 78 77 20 87 85
Fax +18 09 77 87 31 72 77
Passcco@prtc.net

Suplibarca
VE Maracaibo Estado, Zulia
Tel +58 261 7 555 667
Fax +58 261 7 532 259
suplibarca@intercable.net.ve

Asia

AUMA Actuators (Tianjin) Co., Ltd.
CN 300457 Tianjin
Tel +86 22 6625 1310
Fax +86 22 6625 1320
mailbox@auma-china.com
www.auma-china.com

AUMA INDIA PRIVATE LIMITED
IN 560 058 Bangalore
Tel +91 80 2839 4656
Fax +91 80 2839 2809
info@auma.co.in
www.auma.co.in

AUMA JAPAN Co., Ltd.
JP 211–0016 Nakaharaku, Kawasaki-shi
Kanagawa
Tel +81 44 863 8371
Fax +81 44 863 8372
mailbox@auma.co.jp
www.auma.co.jp

AUMA ACTUATORS (Singapore) Pte Ltd.
SG 589559 Singapore
Tel +65 6 4818750
Fax +65 6 4818269
sales@auma.com.sg
www.auma.com.sg

AUMA Actuators Middle East W.L.L.
AE 15268-Salmabad 704
Tel +973 17877377
Fax +973 17877355
Naveen.Shetty@auma.com

PERFECT CONTROLS Ltd.
HK Tsuen Wan, Kowloon
Tel +852 2493 7726
Fax +852 2416 3763
joeip@perfectcontrols.com.hk

DW Controls Co., Ltd.
KR 153-702 Seoul
Tel +82 2 2624 3400
Fax +82 2 2624 3401
sichoi@actuatorbank.com
www.actuatorbank.com

Sunny Valves and Intertrade Corp. Ltd.
TH 10120 Yannawa Bangkok
Tel +66 2 2400656
Fax +66 2 2401095
sunnyvalves@inet.co.th
www.sunnyvalves.co.th/

Top Advance Enterprises Ltd.
TW Jhonghe City Taipei Hsien (235)
Tel +886 2 2225 1718
Fax +886 2 8228 1975
support@auma-taiwan.com.tw
www.auma-taiwan.com.tw

Australia

BARRON GJM Pty. Ltd.
AU NSW 1570 Artarmon
Tel +61 294361088
Fax +61 294393413
info@barron.com.au
www.barron.com.au